Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LIN Huiyan, LIU Zishuai, LI Wenqing, LIU Haiping, TANG Xuekun, ZHOU Hepeng, LUO Xianping. Research on simultaneous leaching and stepwise extraction of rare earth and iron from NdFeB sludge[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 130-138. DOI: 10.13264/j.cnki.ysjskx.2024.01.016
Citation: LIN Huiyan, LIU Zishuai, LI Wenqing, LIU Haiping, TANG Xuekun, ZHOU Hepeng, LUO Xianping. Research on simultaneous leaching and stepwise extraction of rare earth and iron from NdFeB sludge[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 130-138. DOI: 10.13264/j.cnki.ysjskx.2024.01.016

Research on simultaneous leaching and stepwise extraction of rare earth and iron from NdFeB sludge

More Information
  • Received Date: October 02, 2022
  • Revised Date: March 15, 2023
  • NdFeB waste is a precious rare earth secondary resource, and its comprehensive and efficient recovery is of great practical significance for the sustainable development and recycling of rare earth. In this paper, with neodymium iron boron oil sludge as the research object, a new process of simultaneous leaching and step-by-step extraction of rare earth and iron from neodymium iron boron oil sludge was proposed by studying its processes of low-temperature oxidation roasting, hydrochloric acid leaching, oxalic acid precipitation of rare earth, and reduction precipitation of iron. The results show that at the optimal roasting temperature and leaching conditions, the leaching rates of rare earth and iron are respectively 98.80% and 98.41%, a synchronous leaching being achieved. Under the optimal conditions of n(H2C2O4): n(RE3+)=3:1, precipitation temperature of 60℃, and precipitation time of 30min, the precipitation efficiency of rare earth elements is 98.43%, the coprecipitation efficiency of iron is only 0.5%, the oxalate rare earth products with purity of 98.34% are obtained, and the total recovery rate of rare earth is 97.24%, realizing the selective separation of rare earth and iron. Under the optimum conditions of n(H2C2O4): n(Fe)=1.5:1, n(Fe): n(Fe3+)=1:1, precipitation temperature of 30 ℃ and precipitation time of 30min, the iron precipitation rate is 94.28%, the ferrous oxalate products with purity of 99.22% is obtained, and the total iron recovery rate is 92.34%, realizing the comprehensive recycling. Compared with the traditional NdFeB waste recycling process, this process has the advantages of a high comprehensive utilization rate of resources, and less amount of solid waste, providing a new idea for the comprehensive utilization of rare earth secondary resources.
  • [1]
    吉力强, 陈明昕, 顾虎, 等. 轻稀土资源现状及在新能源汽车领域的应用[J]. 中国稀土学报, 2020, 38(2): 129-138.
    [2]
    栗健茹, 徐存英, 卢精灵, 等. 从废钕铁硼中湿法回收稀土研究进展[J]. 湿法冶金, 2022, 41(2): 97-103.
    [3]
    许轩, 贾晓峥, 荆鹏, 等. 钕铁硼废料综合回收技术的研究进展[J/OL]. 稀土. https://doi.org/10.16533/J.CNKI.15-1099/TF.20230018. doi: 10.16533/J.CNKI.15-1099/TF.20230018
    [4]
    王毅军, 刘宇辉, 郭军勋, 等. 用盐酸优溶法从NdFeB废料中回收稀土[J]. 湿法冶金, 2006, 25(4): 195-197.
    [5]
    宋强, 童雄, 谢贤, 等. 钕铁硼永磁废料中稀土回收循环利用现状及展望[J/OL]. 中国有色金属学报. https://kns.cnki.net/kcms/detail/43.1238.tg.20210817.0818.001.html.
    [6]
    董传博, 刘敏, 赖伟鸿, 等. 硫化物除杂法回收钕铁硼废料中稀土元素的研究[J]. 硅酸盐通报, 2013, 32(10): 2127-2132.
    [7]
    吴继平, 邓庚凤, 邓亮亮, 等. 从钕铁硼废料中提取稀土工艺研究[J]. 有色金属科学与工程, 2016, 7(1): 119-124.
    [8]
    邓永春, 吴胜利, 姜银举, 等. 直接还原—渣金熔分法回收钕铁硼废料[J]. 稀土, 2015, 36(5): 8-12.
    [9]
    付利雯, 汪金良, 雷翔, 等. 钕铁硼废料资源化回收利用研究进展[J]. 有色金属科学与工程, 2020, 11(1): 92-97.
    [10]
    邓华军, 段月红, 邓庚凤. 钕铁硼废料中稀土的回收[J]. 矿冶工程, 2019, 39(1): 76-78.
    [11]
    刘庆生, 肖浩, 邱廷省. 钕铁硼废料浸出前后物相转变行为研究[J]. 有色金属科学与工程, 2022,13(6): 127-133.
    [12]
    杜畅. 含铈钕铁硼中稀土元素高选择性回收体系的开发[D]. 赣州:江西理工大学,2021.
    [13]
    韩旗英, 周勇, 张魁芳, 等. 沉淀母液和洗液回用的草酸沉淀稀土方法[J]. 稀土, 2020, 41(1): 85-91.
    [14]
    TIAN Y L, LIU Z W, ZHANG G Q. Recovering REEs from NdFeB wastes with high purity and efficiency by leaching and selective precipitation process with modified agents[J]. Journal of Rare Earths, 2019, 37: 103-108.
    [15]
    HU P C, ZHANG Y M, HUANG J, et al. Eco-Friendly leaching and separation of vanadium over iron impurity from vanadium-bearing shale using oxalic-acid as a leachant[J]. ACS Sustainable Chemistry & Engineering, 2017, 6: 1900-1908.
    [16]
    陶荣荣, 牛泽鹏, 朱晓波, 等. 利用钛白废液制备草酸亚铁实验研究[J]. 稀有金属与硬质合金, 2022, 50(1):6-9.
    [17]
    LIU Z S, HUANG J, ZHANG Y M, et al. Separation and recovery of vanadium and iron from oxalic-acid-based shale leachate by coextraction and stepwise stripping[J]. Separation and Purification Technology, 2020, 249: 116867.
    [18]
    SILLÉN L G, MARTELL A E. Stability Constants of Metal-Ion Complex[M]. London: Metcalfe & Cooper Limited,1964.
    [19]
    LIU Z S, HUANG J, ZHANG Y M, et al. Separation and recovery of iron impurities from a complex oxalic acid solution containing vanadium by K3Fe(C2O4)3·3H2O crystallization[J]. Separation and Purification Technology, 2020, 232: 115970.
  • Related Articles

    [1]LIAN Baidong, QIAO Dengpan, YANG Tianyu, WANG Jun, CHEN Jian, LI Shaoteng, LI Yongming, GAO Bo, LONG Gan. Research on pipeline transportation design of tailings slurry from a tin mine in Yunnan Province based on ANSYS-FLUENT[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 407-421. DOI: 10.13264/j.cnki.ysjskx.2024.03.011
    [2]HU Min, CHEN Min, LUO Yan, LIU Xiaoqiu. Effect of thermal spray coatings of WC-Co on the stress in jaw crusher tooth plate[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 83-87. DOI: 10.13264/j.cnki.ysjskx.2016.06.0014
    [3]Deng Fei, HAN Xiao-liang, Liao sheng-yin, Wang Chun-hui, Hu Long-fei, Yin Li bing. The Numerical Simulation Research of Deep Hole Blasting On the Mine Roadway's Vibrating intensiy[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 106-110. DOI: 10.13264/j.cnki.ysjskx.2015.06.019
    [4]LEI Facheng, ZHAO Yuncai. Feasibility analysis of selecting gearbox bearings indenter based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 116-120. DOI: 10.13264/j.cnki.ysjskx.2015.01.022
    [5]WU Xianzhen, YIN Libing, HU Wei, GAO Xiang, WANG Liangliang. Vibration intensity of multi milliseconds blasting in underground mine based on LS-DYNA[J]. Nonferrous Metals Science and Engineering, 2014, 5(6): 100-104. DOI: 10.13264/j.cnki.ysjskx.2014.06.017
    [6]CHANG Zhenzhen, ZHANG Jiongming, WANG Shunxi, LIU Yi, WANG Bo. Numerical simulation of free surface vortex in 150 t ladle and turbulent model choice[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 37-43. DOI: 10.13264/j.cnki.ysjskx.2014.04.008
    [7]Lin Guohong. Stability classification of filling body's base plate based on ANSYS and GeoStudio coupling[J]. Nonferrous Metals Science and Engineering, 2014, 5(3): 91-95. DOI: 10.13264/j.cnki.ysjskx.2014.03.017
    [8]WANG Jin-liang, WU Yan-xin, ZHANG Wen-hai. Development Status of Lead Smelting Technology and the Lead Vortex Flash Smelting Process[J]. Nonferrous Metals Science and Engineering, 2011, 2(1): 14-18.
    [9]ZHAO Yun-cai, LEI Fa-cheng. Strength Analysis of Ceramic Filter's Rotary Vacuum Based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 42-45.
    [10]CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17.

Catalog

    Article Metrics

    Article views (107) PDF downloads (19) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return