Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
XIANG Xinxin, ZHANG Yaoping, LEI Daxing. Study on ore-body mining effect under rock mass deformation and secondary stress[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 87-96. DOI: 10.13264/j.cnki.ysjskx.2024.01.011
Citation: XIANG Xinxin, ZHANG Yaoping, LEI Daxing. Study on ore-body mining effect under rock mass deformation and secondary stress[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 87-96. DOI: 10.13264/j.cnki.ysjskx.2024.01.011

Study on ore-body mining effect under rock mass deformation and secondary stress

More Information
  • Received Date: November 23, 2022
  • Revised Date: March 24, 2023
  • In order to understand the influence of the mining effect of the surrounding rock under deformation and secondary stress,this paper selected the -410 m section to study the ore body effect of caving mining by combining field test and numerical simulation.The results show that the surrounding rock stress changes in shock,there is a stress reduction area near the upper and lower wall surrounding rock of the orebody,the foote is larger than the hanging wall,the maximum principal stress of the roof reaches 0.44 MPa,and local stress concentration.In addition,the stress concentration parts showed similar horizontal scattered distribution phenomenon.At the same time,the mining boundary presents the state of crack development.The horizontal ore body has a slight subsidence trend,and the fault fracture zone is easy to appear near the boundary of the horizontal roadway and the roof crack in the middle section.The deformation in the vertical direction is obvious,and the inclined part is elliptical distribution.The maximum subsidence displacement is 8.00 mm,and the maximum upward deformation is 3.03 mm.The stress extrusion phenomenon is easy to occur near the intersection line.The study has certain guiding significance to grasp the deformation law of rock mass and mine safety information in time and accurately so as to carry out mining safely,effectively and reasonably.
  • [1]
    李小瑞,侯公羽,吕文涛,等.巷道围岩二次应力状态弹性阶段的试验研究[J]. 采矿与安全工程学报,2021,38(2):269-275.
    [2]
    刘允秋,李光明,徐放艳,等.深部高应力不稳固矿体开采方法研究[J]. 矿业研究与开发,2019,39(7):15-18.
    [3]
    杨丹,刘洋.矩形巷道围岩弹性变形能积聚特征分析[J].力学与实践,2020,42(3):300-305.
    [4]
    赵呈星,李英明.基于围岩变形的预应力锚杆受力特征分析及锚固机理[J]. 煤矿安全,2020,51(7):234-238.
    [5]
    赵国彦,马驰,郭琪.深部硬岩二次应力状态下破裂的断裂力学分析[J]. 科技导报,2012,30(31):47-52.
    [6]
    颜杜民.全断面隧道施工围岩变形多重分形特征研究[J].铁道建筑,2020,60(11):56-58.
    [7]
    龚林金,任锐,王亚琼,等.隧道斜穿不同倾角断层破碎带围岩变形特征分析[J]. 公路,2021,66(7):313-319.
    [8]
    王亚琼,杨强,潘红伟,等.基于3DEC模拟的高地应力水平层状隧道围岩变形破坏特征分析[J]. 现代隧道技术,2022,59(4):127-136.
    [9]
    邓兆睿,孙德全,任仲久,等.近距离煤层群半煤岩上保护层开采卸压增透效应研究[J]. 采矿与岩层控制工程学报,2022,4(2):35-43.
    [10]
    王学滨,岑子豪,薛承宇,等.正断层下盘开采应力演化及断层阻隔效应连续-非连续方法模拟[J]. 地球物理学进展,2022,37(6):2612-2621.
    [11]
    刘雨涛,信连凯,谌志勇.高山矿近距离低透煤层上保护层开采底板卸压增透效应研究[J]. 煤矿安全,2020,51(3):32-37.
    [12]
    王方田,李岗,班建光,等.深部开采充填体与煤柱协同承载效应研究[J]. 采矿与安全工程学报,2020,37(2):311-318.
    [13]
    樊克松,申宝宏,张风达,等.厚煤层开采地表移动变形规律的深厚效应研究[J]. 煤炭科学技术,2018,46(3):194-199.
    [14]
    JIANG F F, ZHOU H,SHENG J,et al.Temperature effect on shear behavior of ore-backfill coupling specimens at various shear directions[J]. Journal of Central South University,2021,28(10):3173-3189.
    [15]
    易璐,郑明贵. 中国稀土开采总量控制政策效应评估[J].有色金属科学与工程,2021,12(2):120-126.
    [16]
    邹国良,刘娜娜. 基于组合赋权-云模型的离子型稀土矿开采工艺评价[J]. 有色金属科学与工程,2021,12(4):88-95.
    [17]
    吴春成. 川藏铁路巴玉隧道开挖二次应力分布特征与岩爆风险分析[J]. 铁道标准设计,2021,65(7):131-135.
    [18]
    郭延辉, 侯克鹏, 李克钢, 等. 不同原岩应力下厚度对急倾斜矿体开采岩移规律的影响[J]. 昆明理工大学学报(自然科学版),2020,45(2):31-37.
    [19]
    张磊, 许琳, 李朝, 等. 煤层群开采垂直应力分布的层间岩性效应研究[J]. 煤炭技术,2021,40(11):31-34.
    [20]
    李小双, 罗浪, 王运敏,等. 露天转地下开采覆岩采动响应的坡角影响效应研究[J]. 矿冶工程,2021,41(4):33-37.
    [21]
    CHEN M,ZANG C W,DING Z W,et al.Effects of confining pressure on deformation failure behavior of jointed rock[J].Journal of Central South University,2022,29(4):1305-1319.
    [22]
    唐维军, 孙希奎, 王恒, 等. 膏体充填开采条带煤柱覆岩稳定效应研究[J]. 煤炭科学技术,2017,45(09):109-115.
    [23]
    朱广安, 刘博文, 窦林名, 等. 基于采空区压实效应的工作面开采全过程模拟[J]. 中国矿业大学学报,2019,48(4):775-783.
    [24]
    廖宝泉,柯愈贤,方立发,等.膏体充填开采覆岩移动变形规律研究[J].有色金属科学与工程,2022,13(3):99-105.
    [25]
    XUE Y C,XU T,WASANTHA P L P,et al.Control of dynamic disaster by backfill mining under thick magmatic rock in one side goaf[J].Journal of Central South University,2020,27(10):3103-3117.
  • Related Articles

    [1]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [2]CHENG Qiuting, DENG Fei, CHEN Yanhong, XIA Yijiang, WANG Xiaojun. Numerical simulation analysis on the stability of mined-out area[J]. Nonferrous Metals Science and Engineering, 2015, (2): 85-88. DOI: 10.13264/j.cnki.ysjskx.2015.02.016
    [3]ZHAO Fei, ZHANG Yanling, ZHU Rong, ZHAO Shiqiang. Numerical simulation of effect of preheating temperature on supersonic oxygen jet characteristics[J]. Nonferrous Metals Science and Engineering, 2014, 5(6): 34-37. DOI: 10.13264/j.cnki.ysjskx.2014.06.006
    [4]ZHAO Kui, SHAO Hai, XU Feng, ZENG Peng, DENG Xiao-ping, WANG Ming. Numerical simulation of stability of mining of different mining entrances in a copper mine[J]. Nonferrous Metals Science and Engineering, 2013, 4(2): 46-50. DOI: 10.13264/j.cnki.ysjskx.2013.02.009
    [5]RAO Yun-zhang, XU Ling-bin. Copper mine numerical simulation study of the impact of reverse fault on the surrounding rock stability[J]. Nonferrous Metals Science and Engineering, 2012, 3(6): 55-60. DOI: 10.13264/j.cnki.ysjskx.2012.06.011
    [6]WU Chang-fu, TANG Min-bo, GU Peng, LIU Hou-ming. Numerical simulation on the partial ventilation in the single entry mine tunnel[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 71-73. DOI: 10.13264/j.cnki.ysjskx.2012.03.014
    [7]WU Hui, CAI Si-jing, WANG Zhang, CHEN Wu-jiu. Numerical simulation of ventilation network and its validation in Hemushan iron mine[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 60-65. DOI: 10.13264/j.cnki.ysjskx.2012.03.013
    [8]DENG Tong-fa, WU Zhou-ming, LUO Si-hai, GUI Yong. Numerical simulation for the effect of saturated soil with changing permeability coefficient under dynamic compaction[J]. Nonferrous Metals Science and Engineering, 2012, 3(1): 57-62. DOI: 10.13264/j.cnki.ysjskx.2012.01.002
    [9]SHI Fei, HE Jian. Numerical Simulation of Surface Movement in Insufficient Mining Region[J]. Nonferrous Metals Science and Engineering, 2007, 21(4): 16-17, 30.
    [10]CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17.
  • Cited by

    Periodical cited type(6)

    1. 蒋瑞,陈泰强. 锌离子化海泡石涂层锌负极的制备与性能. 广州化学. 2024(01): 49-55 .
    2. 蔡志勇,文璟,王日初,彭超群. 增强体表面改性在高导热金属基复合材料中的应用. 有色金属科学与工程. 2024(02): 237-255 . 本站查看
    3. 徐杰,阮挺婷,马全新,孙蓉,路胜利. 水系锌离子电池负极改性策略研究进展. 有色金属科学与工程. 2024(04): 513-526 . 本站查看
    4. 周飞. 船用高比表面积二氧化钛核复合光催化材料研究. 舰船科学技术. 2023(12): 47-50 .
    5. 李尚颖,王春源,卫文飞,汪洋. 凹凸棒石包覆的锌电极的制备及其对电池性能的影响. 硅酸盐学报. 2023(10): 2617-2625 .
    6. 范敏敏,罗成玲,薛裕华. 水系锌电池Se@Zn负极的制备及性能. 广州化学. 2023(06): 36-39 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (65) PDF downloads (9) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return