Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LIU Chunlin, TANG Yanchuan, ZHANG Qingzhu, QIN Xinbao, LANG Pengjiang, ZHANG Xinlei. Effect of layer hardness ratio on strength and toughness of Cu-Be/Cu layered composite materials with heterostructure[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 67-79. DOI: 10.13264/j.cnki.ysjskx.2024.01.009
Citation: LIU Chunlin, TANG Yanchuan, ZHANG Qingzhu, QIN Xinbao, LANG Pengjiang, ZHANG Xinlei. Effect of layer hardness ratio on strength and toughness of Cu-Be/Cu layered composite materials with heterostructure[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 67-79. DOI: 10.13264/j.cnki.ysjskx.2024.01.009

Effect of layer hardness ratio on strength and toughness of Cu-Be/Cu layered composite materials with heterostructure

More Information
  • Received Date: January 30, 2023
  • Revised Date: May 07, 2023
  • The Cu-Be/Cu layered heterogeneous composite materials with different layer hardness ratios (RCu-Be/Cu=3.0, 5.0, 7.0) were prepared by vacuum hot pressing bonding, cold rolling and subsequent heat treatments. The effects of RCu-Be/Cu with different interlayer hardness ratio on the balance of strength and ductility and the strain hardening rate of the composites were investigated. Furthermore, the effect of heterogeneous deformation induced (HDI) hardening on the strain hardening behavior of composites with different RCu-Be/Cu was also studied. The results show that the ultimate tensile strength increases and the uniform elongation decreases with the increase of the interlayer hardness ratio. However, the ultimate tensile strength of the composites is higher than the value calculated by the rule of mixture (ROM). Moreover, the uniform elongation is also higher than that of the corresponding Cu-Be component, among which the composites with RCu-Be/Cu of 5.0 possess the best balance of strength and ductility. The extra strain hardening effect in the layered composite materials with heterostructure can be caused by HDI hardening. The effect of HDI hardening on strain hardening is relatively weak in the composites with RCu-Be/Cu of 3.0, while the HDI hardening in the composites with RCu-Be/Cu of 7.0 reaches saturation at the initial stage of plastic deformation and then decreases rapidly. The HDI hardening in the composites with RCu-Be/Cu of 5.0 plays a dominant role during the strain hardening process and provides the extra strain hardening effect for the composites within a large strain range.
  • [1]
    姜业欣, 娄花芬, 解浩峰, 等. 先进铜合金材料发展现状与展望[J]. 中国工程科学, 2020, 22(5): 84-92.
    [2]
    雷前, 杨一海, 肖柱, 等. 高强高导高耐热铜合金的研究进展与展望[J]. 材料导报, 2021, 35(15): 15153-15161.
    [3]
    代雪琴, 贾淑果, 范俊玲, 等. 高强高导铜合金的强化机理与研究热点[J]. 材料热处理学报, 2021, 42(10): 18-26.
    [4]
    TANG Y C, KANG Y L, YUE L J, et al. Precipitation behavior of Cu-1.9 Be-0.3 Ni-0.15 Co alloy during aging[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(3): 307-315.
    [5]
    AHN H, HAN S Z, CHOI E A, et al. Simple optimization for strength and conductivity of Cu-Ni-Si alloy with discontinuous precipitation[J]. Materials Characterization, 2022, 184: 111605.
    [6]
    刘若絮, 毛西秦, 欧梅桂, 等. 冷拉拔变形对纯铜组织及性能的影响[J]. 有色金属科学与工程, 2022, 13(2): 67-75.
    [7]
    刘婷, 徐淑波, 秦振, 等. 剧烈塑性变形对块状镁合金微观组织和力学性能的影响[J]. 有色金属科学与工程, 2013, 4(4): 51-57.
    [8]
    TANG Y C, KANG Y L, YUE L J, et al. Mechanical properties optimization of a Cu-Be-Co-Ni alloy by precipitation design[J]. Journal of Alloys and Compounds, 2017, 695: 613-625.
    [9]
    范根莲, 郭峙岐, 谭占秋, 等. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.
    [10]
    张显程, 张勇, 李晓, 等. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
    [11]
    武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
    [12]
    ZHU Y T, WU X L. Perspective on hetero-deformation induced (HDI) hardening and back stress[J]. Materials Research Letters, 2019, 7(10): 393-398.
    [13]
    ZHU Y T, AMEYAMA K, ANDERSON P M, et al. Heterostructured materials: superior properties from hetero-zone interaction[J]. Materials Research Letters, 2021, 9(1): 1-31.
    [14]
    WU X L, ZHU Y T. Gradient and lamellar heterostructures for superior mechanical properties[J]. MRS Bulletin, 2021, 46(3): 244-249.
    [15]
    WU X L, YANG M, YUAN F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14501-14505.
    [16]
    HUANG C X, WANG Y F, MA X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate[J]. Materials Today, 2018, 21(7): 713-719.
    [17]
    WANG Y F, YANG M X, MA X L, et al. Improved back stress and synergetic strain hardening in coarse-grain/nanostructure laminates[J]. Materials Science and Engineering: A, 2018, 727: 113-118.
    [18]
    LI J S, WANG S Z, MAO Q Z, et al. Soft/hard copper/bronze laminates with superior mechanical properties[J]. Materials Science and Engineering: A, 2019, 756: 213-218.
    [19]
    XIA Y P, WU H, MIAO K S, et al. Effects of the layer thickness ratio on the enhanced ductility of laminated aluminum[J]. Journal of Materials Science & Technology, 2022, 111: 256-267.
    [20]
    CHEN X, ZHANG B X, ZOU Q, et al. Design of pure aluminum laminates with heterostructures for extraordinary strength-ductility synergy[J]. Journal of Materials Science & Technology, 2022, 100: 193-205.
    [21]
    唐延川, 张欣磊, 柳春林, 等. Cu-Be/Cu层状非均质复合材料塑性变形行为的原位研究[J]. 华东交通大学学报, 2022, 39(3): 99-109.
    [22]
    AFSHAR A, SIMCHI A. Flow stress dependence on the grain size in alumina dispersion-strengthened copper with a bimodal grain size distribution[J]. Materials Science and Engineering: A, 2009, 518(1/2): 41-46.
    [23]
    ZHANG H T, JIANG Y B, XIE J X, et al. Precipitation behavior, microstructure and properties of aged Cu-1.7 wt% Be alloy[J]. Journal of Alloys and Compounds, 2019, 773: 1121-1130.
    [24]
    TANG Y C, KANG Y L, YUE L J, et al. The effect of aging process on the microstructure and mechanical properties of a Cu-Be-Co-Ni alloy[J]. Materials & Design, 2015, 85: 332-341.
    [25]
    耿林, 范国华. 金属基复合材料的构型强韧化研究进展[J]. 中国材料进展, 2016, 35(9): 686-693,701.
    [26]
    HUANG M, XU C, FAN G, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite[J]. Acta materialia, 2018, 153: 235-249.
    [27]
    孙甲鹏, 贾云飞, 张勇, 等. 强塑均衡金属材料精准设计及制备[J]. 机械工程学报, 2021, 57(16): 329-348, 360.
    [28]
    MONDAL C, SINGH A K, MUKHOPADHYAY A K, et al. Tensile flow and work hardening behavior of hot cross-rolled AA7010 aluminum alloy sheets[J]. Materials Science and Engineering: A, 2013, 577: 87-100.
    [29]
    TIAN Y Z, ZHAO L J, PARK N, et al. Revealing the deformation mechanisms of Cu-Al alloys with high strength and good ductility[J]. Acta Materialia, 2016, 110: 61-72.
    [30]
    WANG E H, KANG F W, WANG H B, et al. Fabrication, microstructure and mechanical properties of novel NiTi/(Al3Ti+ Al3Ni) laminated composites[J]. Journal of Alloys and Compounds, 2019, 775: 1307-1315.
    [31]
    FANG X T, HE G Z, ZHENG C, et al. Effect of heterostructure and hetero-deformation induced hardening on the strength and ductility of brass[J]. Acta Materialia, 2020, 186: 644-655.
    [32]
    GAO B, HU R, PAN Z, et al. Strengthening and ductilization of laminate dual-phase steels with high martensite content[J]. Journal of Materials Science & Technology, 2021, 65: 29-37.
    [33]
    LIU D, WANG J, WANG C, et al. Hetero-Deformation-Induced (HDI) plasticity induces simultaneous increase in both yield strength and ductility in a Fe50Mn30Co10Cr10 high-entropy alloy[J]. Applied Physics Letters, 2021, 119(13): 131906.
    [34]
    ZHAO J F, ZAISER M, LU X C, et al. Size-dependent plasticity of hetero-structured laminates: A constitutive model considering deformation heterogeneities[J]. International Journal of Plasticity, 2021, 145: 103063.
  • Related Articles

    [1]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [2]GUO Ziting, HUANG Jinchao, XIAO Qingmei, ZHONG Shengwen. Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 227-234. DOI: 10.13264/j.cnki.ysjskx.2023.02.009
    [3]ZHOU Langya, WANG Richu, WANG Xiaofeng, CAI Zhiyong, DONG Cuige. On the hot deformation behavior and constitutive model of SiCp/2014Al composites[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 66-74. DOI: 10.13264/j.cnki.ysjskx.2021.04.009
    [4]LIU Chao, CHEN Jiqiang, WEN Feng, LI Qilong, ZHAO Hongjin. Preparation of Al-Cu-Li alloy single crystal by cyclic strain-high temperature annealing[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 81-89. DOI: 10.13264/j.cnki.ysjskx.2021.01.011
    [5]WU Wenbo, CUI Shuhui, ZHENG Xueqing, XING Meishan. Determination the production process of Cu-Ni-Si alloy for the motor[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 76-81. DOI: 10.13264/j.cnki.ysjskx.2020.02.011
    [6]MA Jimiao, LIU Feng, LIU Longming, SHAO Ye, ZHENG Yun, PENG Lijun. Cold hardening and recrystallization temperature of Cu-Ni-Si-P alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(2): 43-46. DOI: 10.13264/j.cnki.ysjskx.2017.02.007
    [7]CHEN Chen, ZHOU Yulong, XIAO Weijing, WANG Xiaojun, FENG Xiao. Three axis strength of deformation characteristics of rock rheometer based on RTS-500[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 89-93. DOI: 10.13264/j.cnki.ysjskx.2016.03.016
    [8]TAN Ying, LIN Xiangfei, ZHANG Shidao, WANG Hongyang, LIN Gaoyong. Abnormal mechanical behaviors of deformed Zn-Cu-Ti alloy[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 57-64. DOI: 10.13264/j.cnki.ysjskx.2015.06.011
    [9]ZHAO De-wen, ZHANG Shun-hu, LI Can-ming, WANG Guo-dong. Mathematic equation of isotropic hardening and its geometrical representation in principal stress space[J]. Nonferrous Metals Science and Engineering, 2011, 2(6): 12-15.
    [10]FANG Ling, ZHANG Xiao-lian, TAN Ai-hua, YANG Shao-min. On the Law of Age-hardening of Mg-Gd-Y-Zr Magnesium Alloy[J]. Nonferrous Metals Science and Engineering, 2008, 22(3): 29-31.

Catalog

    Article Metrics

    Article views (68) PDF downloads (8) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return