Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
TAN Ying, LIN Xiangfei, ZHANG Shidao, WANG Hongyang, LIN Gaoyong. Abnormal mechanical behaviors of deformed Zn-Cu-Ti alloy[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 57-64. DOI: 10.13264/j.cnki.ysjskx.2015.06.011
Citation: TAN Ying, LIN Xiangfei, ZHANG Shidao, WANG Hongyang, LIN Gaoyong. Abnormal mechanical behaviors of deformed Zn-Cu-Ti alloy[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 57-64. DOI: 10.13264/j.cnki.ysjskx.2015.06.011

Abnormal mechanical behaviors of deformed Zn-Cu-Ti alloy

More Information
  • Received Date: October 15, 2015
  • Published Date: December 30, 2015
  • The abnormal mechanical behaviors of Zn-Cu-Ti alloy were discovered, such as working softening and anneal hardening. Microstructures of cold-rolled and annealed strips were observed and analyzed by SEM、 TEM and EDS. The results show that vickers hardness of the strips increases slightly as cold rolling deformation rate raising from 0 % to 40.6 %, and decreases significantly as cold rolling proceeding (40.6 %~85.7 %), the alloy exhibits a remarkable working softening. The facilitated precipitation induced by cold strain which weakens solid solution strengthening by reducing Cu and Ti solute atoms, along with dynamic recrystallization, resulting in working softening. Strength of the strips (cold deformation rate of 85.7 % ) increase significantly after being annealed at 195 ℃ or 215 ℃ , the alloy exhibits a remarkable anneal hardening. Strength of the strips soaking at 215 ℃ is higher than that at 195 ℃ for the same time period. The decomposition of second phase, the dissolution of Cu and Ti atoms during annealing and the effect of solid solution strengthening surpassing second phase strengthening result in anneal hardening of the alloy.
  • [1]
    彭曙光. 锌铜钛合金及其产业前景分析[J]. 湖南有色金属, 2003, 19(2): 35-37. http://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ200302011.htm
    [2]
    郭天立, 杨如中, 陈锐. 锌合金发展现状述评[J]. 有色矿冶, 2001, 17(5): 37-40. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKY200105009.htm
    [3]
    彭大暑. 金属塑性加工原理[M]. 2版. 长沙: 中南大学出版社, 2014: 159-163.
    [4]
    高存贞, 杨涤心, 谢敬佩, 等. 高铝锌合金研究现状及进展[J]. 热加工工艺, 2010, 39(7): 23-28. http://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201007007.htm
    [5]
    孙文声, 张锦麟. 加工量对ZA16合金组织和性能的影响[J]. 热加工工艺, 2010, 39(23): 13-15. http://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201023005.htm
    [6]
    孙文声, 张锦麟, 董乐军. 变形Zn-16Al合金退火硬化行为研究[J]. 兵器材料科学与工程, 2010, 33(6): 51-53. http://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201006020.htm
    [7]
    Yang C F, Pan J H, Lee T H. Work-softening and anneal-hardening behaviors in fine-grained Zn-Al alloys[J]. Journal of Alloys and Compounds, 2009, 468: 230-236. doi: 10.1016/j.jallcom.2008.01.067
    [8]
    张喜民. 变形锌铜钛合金蠕变行为及其组织性能研究[D]. 长沙: 中南大学, 2010.
    [9]
    Diot M, Philippe M J, WeGria J, et al. Addition elements and texture gradients in rolled zinc alloys[J]. Scripta Materialia, 1999, 40(11): 1295-1303. doi: 10.1016/S1359-6462(99)00077-9
    [10]
    王艳, 肖来荣, 万磊, 等. 两种变形Zn-Cu-Ti锌合金的组织与性能[J]. 特种铸造及有色合金, 2012, 32(11): 1054-1059. http://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201211033.htm
    [11]
    Abou El-Khair M T, Daoud A, Ismail A. Effect of different Al contents on the microstructure, tensile and wear properties of Zn-based alloy[J]. Materials Letters, 2004, 58(11): 1754-1760. doi: 10.1016/j.matlet.2003.10.058
    [12]
    张喜民, 肖来荣, 温燕宁. 挤压Zn-Cu-Ti合金组织及其力学性能[J]. 材料科学与工程学报, 2010, 28(4): 1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201004025.htm
    [13]
    Zhu Y H, To S, Liu X M, et al. Microstructural changes inside the lamellar structures of alloy ZA27[J]. Materials Characterization, 2006, 57(4/5): 326-332. http://cn.bing.com/academic/profile?id=9435cc55ce88be38ef8da3d246eaa9af&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    乔艳艳, 宋克兴, 张彦敏, 等. 热处理对变形Zn-Cu-Ti合金组织和性能的影响[J]. 河南科技大学学报, 2015, 36(1): 6-12. http://www.cnki.com.cn/Article/CJFDTOTAL-LYGX201501003.htm
    [15]
    Savaskan T, Hekimoqlu A P, Purcek G. Effect of copper content on the mechanical and sliding wear properties of monotectoid-based zinc-aluminium-copper alloys[J]. Tribology International, 2004, 37(1): 45-50. doi: 10.1016/S0301-679X(03)00113-0
    [16]
    Santos G A, de Moura Neto C, Osorio W R, et al. Design of mechanical properties of a Zn27Al alloy based on microstructure dendritic array spacing [J]. Materials and Design, 2007, 28 (9): 2425-2430. doi: 10.1016/j.matdes.2006.09.009
  • Related Articles

    [1]MA Junqi, TAO Xingzhen, PENG Lin, XIE Yufei. Crack detection and recognition based on improved BiSeNetV2[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 91-97. DOI: 10.13264/j.cnki.ysjskx.2022.06.012
    [2]ZHANG Wangcheng, LI Qiang, HUANG Cong, ZENG Xianshan. Effects of solid solution time on microstructure and properties of the UNS N10276 welded tube[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 88-92. DOI: 10.13264/j.cnki.ysjskx.2022.02.012
    [3]HUANG Jingming, WANG Zhaowen, LIU Zengwei, TIAN Yabin, YE Changmei, YANG Shaohua. Analysis of local corrosion of 7075 aluminum alloy by SECM[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 14-20. DOI: 10.13264/j.cnki.ysjskx.2019.03.003
    [4]WU Jianzhong, YANG Wensheng, GUO Hanjie, YU Mengxi, SHI Xiao, DUAN Shengchao. Comprehensive strengthening mechanism of DH36 high-strength ship plate steel[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 19-25. DOI: 10.13264/j.cnki.ysjskx.2017.04.004
    [5]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [6]YE Qing, FENG Xingyu, ZHAO Hongjin. Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 79-83. DOI: 10.13264/j.cnki.ysjskx.2017.03.013
    [7]MA Jimiao, LIU Feng, LIU Longming, SHAO Ye, ZHENG Yun, PENG Lijun. Cold hardening and recrystallization temperature of Cu-Ni-Si-P alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(2): 43-46. DOI: 10.13264/j.cnki.ysjskx.2017.02.007
    [8]ZHANG Yinghui, PENG Kai, FENG Xingyu, HU Yujun. Numerical simulation of deformation behavior and secondary phase orientation in H65 brass alloys ECAP[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 105-111. DOI: 10.13264/j.cnki.ysjskx.2017.01.018
    [9]ZHANG Ming-ming, WU Yu. On the aging behavior of Cu-Ni-Si-Zr alloy[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 12-16. DOI: 10.13264/j.cnki.ysjskx.2012.02.017
    [10]WANG Jian-ru, LIU Zu-wen, ZHU Qiang, XU Jian-hong. On the Factors Affecting the Phosephorus and Nitrogen Removal by Carrousel Oxidation Ditch Process[J]. Nonferrous Metals Science and Engineering, 2011, 2(1): 51-54.

Catalog

    Article Metrics

    Article views (78) PDF downloads (11) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return