Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LUO Xuan, FENG Yusheng, PANG Qishou. Numerical simulation of the influence of blade layer number on the stirring characteristics in draft tube stirred tank[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 728-733. DOI: 10.13264/j.cnki.ysjskx.2023.05.016
Citation: LUO Xuan, FENG Yusheng, PANG Qishou. Numerical simulation of the influence of blade layer number on the stirring characteristics in draft tube stirred tank[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 728-733. DOI: 10.13264/j.cnki.ysjskx.2023.05.016

Numerical simulation of the influence of blade layer number on the stirring characteristics in draft tube stirred tank

More Information
  • Received Date: April 01, 2023
  • Revised Date: May 11, 2023
  • Available Online: November 07, 2023
  • The number of stirring blade layers has an extremely important effect on the stirring characteristics of the draft tube stirred tank. In this paper, the physical model data of a draft tube stirred tank with a volume of 10 m3 in a rare earth enterprise in the southern part of Jiangxi province were taken as a reference, and a three-dimensional model of the draft-tube stirred tank and different layers of the stirring blades was established using SolidWorks 3D software. The 3D model was processed by the fluid software FLUENT, and the blade intervals of 450 mm were selected as basic data according to the relevant formula. The glycerin aqueous solution was selected as the carrier according to principle of similarity, and the stirring process of material and liquid in the stirring tank with different stirring blade layers number was simulated. Based on the parameters of time-averaged velocity distribution, velocity, turbulent kinetic energy, and power consumption, the stirring characteristics in draft tube mixing tank with different stirring blade layer numbers were analyzed and evaluated, verifying the optimal stirring characteristics of the draft-tube stirred tank with double-layer impeller blades.
  • [1]
    刘承枫, 赖丹. 产业链视角下的我国稀土企业资产结构对财务绩效的影响研究[J]. 江西理工大学学报, 2017,38(4):52-58.
    [2]
    逄启寿, 忻治霖, 林小程, 等. 稀土电解槽电化学三维时变流场数值模拟[J]. 有色金属科学与工程,2022,13(3):152-158.
    [3]
    龚姚腾, 聂林, 郜飘飘, 等. 稀土萃取槽混合室结构研究[J].机械设计与制造, 2016, 12(8): 128-130, 134.
    [4]
    冯羽生,逄启寿,袁娟娣.无隔板稀土萃取槽中搅拌桨安装深度优化研究[J]. 稀有金属与硬质合金, 2018,46(5):13-17.
    [5]
    闫光礼,冯羽生,逄启寿.搅拌桨叶距槽底距离对导流筒稀土搅拌槽搅拌特性的影响分析[J]. 有色金属(选矿部分),2019(6):82-88.
    [6]
    黄晶明,张晓虎,田亚斌.Nd(Ⅲ)在NaF-KF熔盐钨电极上电化学行为[J]. 有色金属科学与工程,2020,11(5):127-133.
    [7]
    冯羽生,逄启寿.两级间稀土萃取槽连接管道直径大小优选研究[J]. 中国稀土学报,2018,36(5):608-614.
    [8]
    闫光礼,冯羽生,徐水太.镝铁阴极电蚀对稀土电解槽电解特性的影响[J]. 有色金属科学与工程,2019,10(6):92-96.
    [9]
    徐水太.赣州稀土产业可持续发展的问题与对策研究[J].江西理工大学学报,2014,35(4):47-50.
    [10]
    ZHANG J L, LI L, LIU X X. Development status and application research of wearable exoskeleton robot[J]. Machinery & Electronics,2018,36(3): 77-80.
    [11]
    王亮.钕铁硼酸溶导流筒搅拌槽三维流场与混合过程的研究分析[D]. 赣州:江西理工大学,2018.
    [12]
    逄启寿,曾文星. 稀土萃取三层搅拌桨不同插入深度对搅拌的影响[J]. 湿法冶金,2013,32(1):61-63.
    [13]
    逄启寿,邓华军.三层桨搅拌槽内三维流场的数值模拟[J].有色金属(冶炼部分),2012,12(7):40-43.
    [14]
    徐金,逄启寿.双层桨搅拌槽的混合过程研究[J]. 中国有色冶金,2017,46(1):46-49.
    [15]
    逄启寿,王福辉,周雄军. 双层桨搅拌槽内流场的数值模拟[J]. 湿法冶金,2014,32(6):412-417.
    [16]
    冯羽生, 逄启寿, 徐水太, 等. 不同前室稀土萃取槽内流场特性的影响分析[J]. 有色金属工程, 2018, 8(4): 62-67.
    [17]
    徐金.萃取槽前室结构研究[D].赣州:江西理工大学,2017.
    [18]
    张选旭.离子型稀土矿冶炼分离生产取水定额调研分析及研究[J]. 有色金属科学与工程,2021,12(2):113-119.
    [19]
    邓华军.稀土萃取槽内三维流场与混合过程的数值模拟[D]. 赣州:江西理工大学,2008.
    [20]
    吴富姬.搅拌混合槽内混合过程的数值模拟[J]. 湿法冶金,2014,33(4):328-331.
    [21]
    满长才.基于Fluent软件对稀土萃取搅拌槽三维流场的数值模拟[D]. 赣州:江西理工大学,2011.
    [22]
    逄启寿,吴文元.基于Fluent的稀土萃取搅拌槽的优化设计[J]. 湿法冶金,2012,31(6):383.
  • Related Articles

    [1]WU Yukun, LI Zhengquan, WANG Yide, XU Zhiheng, LI Kaixuan, SHI Haoyu. Research on stirring process based on artificial neural network and multi-phase flow simulation technology[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 801-813. DOI: 10.13264/j.cnki.ysjskx.2024.06.003
    [2]GUO Hao, WANG Yajie, ZHAO Hongbo, ZUO Haibin. Numerical simulation of pulverized coal forming process[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 357-363. DOI: 10.13264/j.cnki.ysjskx.2024.03.006
    [3]ZHANG Jing, HUANG Qizhou, FANG Wenhua, YANG Qing. Numerical simulation and process parameters optimization of electromagnetic stirrer with multi-mode magnetic field[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 34-42. DOI: 10.13264/j.cnki.ysjskx.2020.06.005
    [4]WAN Zhanghao, XU Zhifeng, HUANG Jindi, YAN Kang. Three-phase stirring simulation of H2SO4-O2-copper anode slime and grey comprehensive evaluation in vertical reactor[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 21-28. DOI: 10.13264/j.cnki.ysjskx.2018.04.004
    [5]DU Kaiping, ZHAO Shiqiang, WU Shengli. Numerical simulation of smelting characteristics around raceway in melter gasifier[J]. Nonferrous Metals Science and Engineering, 2017, 8(2): 8-13. DOI: 10.13264/j.cnki.ysjskx.2017.02.002
    [6]DENG Keyue, LIU Zheng, ZHANG Jiayi, WU Qiang. Distribution rule of rare earth in aluminum melt under electromagnetic stirring[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 40-46. DOI: 10.13264/j.cnki.ysjskx.2016.03.008
    [7]XIE Yong, HE Wen, LIU Xianjun, XIE Tao, HUANG Xiangtao. Acoustic emission characteristics for filling body during tensile tests and its numerical simulation[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 94-99. DOI: 10.13264/j.cnki.ysjskx.2015.03.018
    [8]ZHAO Fei, ZHANG Yanling, ZHU Rong, ZHAO Shiqiang. Numerical simulation of effect of preheating temperature on supersonic oxygen jet characteristics[J]. Nonferrous Metals Science and Engineering, 2014, 5(6): 34-37. DOI: 10.13264/j.cnki.ysjskx.2014.06.006
    [9]FENG Kai, ZHONG Jian-hua, TANG Zhi-li. The 3-D numerical simulation of heat transfer process for multi-start spiral pipe[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 95-98. DOI: 10.13264/j.cnki.ysjskx.2012.03.006
    [10]CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17.

Catalog

    Article Metrics

    Article views (91) PDF downloads (9) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return