Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHANG Jing, HUANG Qizhou, FANG Wenhua, YANG Qing. Numerical simulation and process parameters optimization of electromagnetic stirrer with multi-mode magnetic field[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 34-42. DOI: 10.13264/j.cnki.ysjskx.2020.06.005
Citation: ZHANG Jing, HUANG Qizhou, FANG Wenhua, YANG Qing. Numerical simulation and process parameters optimization of electromagnetic stirrer with multi-mode magnetic field[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 34-42. DOI: 10.13264/j.cnki.ysjskx.2020.06.005

Numerical simulation and process parameters optimization of electromagnetic stirrer with multi-mode magnetic field

More Information
  • Received Date: June 07, 2020
  • Published Date: December 30, 2020
  • By designing a multi-mode electromagnetic stirrer, this paper established a three-dimensional numerical model of the multi-mode magnetic field electromagnetic stirrer assisted with the finite element analysis software Ansoft Maxwell. At the same time, the electromagnetic field parameters of the experimental platform are measured by using the Gaussian meter. The comparison of the two models shows that the overall trend is consistent and the numerical deviation is small. It testified the accuracy of the numerical simulation model. The influence of excitation current intensity and frequency on the magnetic induction intensity and electromagnetic force distribution of rotating magnetic field, traveling wave magnetic field and spiral magnetic field are studied and analyzed by using the three-dimensional numerical model, so as to optimize the process parameters.
  • [1]
    王顺成, 郑开宏, 戚文军, 等.电磁搅拌对Al-5Ti-1B的显微组织与晶粒细化能力的影响[J].有色金属科学与工程, 2014, 5(1): 58-62. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201401011
    [2]
    李红光. 360mm×450mm大方坯电磁搅拌强度对齿轮钢碳元素均质性的影响与控制研究[J].钢铁钒钛, 2019, 40(1): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201901031.htm
    [3]
    刘政, 谌庆春, 许鹤君, 等.稀土Y在电磁搅拌条件下对半固态ZL101铝合金初生α相的影响[J].有色金属科学与工程, 2013, 4(6): 92-98. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2013060018
    [4]
    于海岐, 朱苗勇.圆坯结晶器电磁搅拌过程三维流场与温度场数值模拟[J].金属学报, 2008, 44(12): 1465-1473. doi: 10.3321/j.issn:0412-1961.2008.12.011
    [5]
    邓可月, 刘政, 张嘉艺, 等.电磁搅拌下稀土在铝合金熔体中的分布规律[J].有色金属科学与工程, 2016, 7(3): 40-46. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2016030008
    [6]
    李红光. 360mm×450mm大方坯电磁搅拌强度对齿轮钢碳元素均质性的影响与控制研究[J].钢铁钒钛, 2019, 40(1): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201901031.htm
    [7]
    SCHURMANN D, WILLERS B, HACKL G, et al. Experimental study of the mold flow induced by a swirling flow nozzle and electromagnetic stirring for continuous casting of round blooms[J]. Metallurgical and Materials Transactions B, 2019, 50(2): 716-731. doi: 10.1007/s11663-018-1491-5
    [8]
    陈永, 朱苗勇, 蔡可森, 等. 280 mm×380 mm方坯连铸结晶器电磁搅拌数值模拟[J].钢铁钒钛, 2008, 29(2): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT200802012.htm
    [9]
    王学兵, 胡坤太, 仇圣桃, 等.圆坯连铸结晶器电磁搅拌电磁场、流场的数值模拟[J].连铸, 2008, 33(2): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-LANG200802017.htm
    [10]
    吉光, 高秀华, 张洪才, 等.凝固末端电磁搅拌位置优化及其对高碳钢连铸圆坯内部质量的影响[J].热加工工艺, 2018, 47(9): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201809010.htm
    [11]
    王亚非, 贾华, 袁日栋.电磁搅拌器磁场形态研究及选择[J].铸造技术, 2018, 39(7): 1549-1553. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201807050.htm
    [12]
    马忠存, 熊洪进, 郭鑫.结晶器内磁感应强度分布研究[J].黑龙江冶金, 2015, 35(5): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYJ201505002.htm
    [13]
    董雪明, 龙祖洪, 梁云竹, 等.角速度波动率校准方法初探[J].航空计测技术, 2004, 24(5): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJC200405002.htm
    [14]
    张晓文.基于有限元法的盘式无铁心永磁同步电动机的参数计算[D].天津: 天津大学, 2007.
    [15]
    侯淑萍.新型高性能电工材料应用特性模块化与自学习建模技术研究[D].天津: 河北工业大学, 2009.
    [16]
    王宏斌, 底根顺, 李建峰, 等.宣钢炼钢连铸工艺优化和技术改造[J].冶金标准化与质量, 2007, 45(2): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YJBL200702014.htm
    [17]
    MAURYA A, JHA P K. Two-phase analysis of interface level fluctuation in continuous casting mold with electromagnetic stirring[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2018, 28(9): 2036-2051. doi: 10.1108/HFF-08-2017-0310
    [18]
    赵倩.螺旋磁场搅拌对合金内在质量影响的模拟与实验研究[D].大连: 大连理工大学, 2013.
    [19]
    刘洋, 王新华.二冷区电磁搅拌对连铸板坯中心偏析的影响[J].北京科技大学学报, 2007, 29(6): 582-585. doi: 10.3321/j.issn:1001-053X.2007.06.008
    [20]
    韩玉杰. 5A02铝合金板材磁脉冲成形流动规律研究[D].哈尔滨: 哈尔滨工业大学, 2013.
    [21]
    龚锋.电磁场作用下定向凝固过程流动、传热、传质的耦合数值模拟[D].西安: 西北工业大学, 2006.
  • Related Articles

    [1]FENG Qiang, LI Jian. Advances in electrocatalytic CO2 reduction with copper-based catalysts[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 364-382. DOI: 10.13264/j.cnki.ysjskx.2024.03.007
    [2]DOU Zhongkun, ZHANG Jialiang, CHEN Yongqiang, WANG Chengyan. Separation of molybdenum and nickel from acidic leaching solution of melted alloy of waste hydrogenation catalyst by solvent extraction[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 1-7. DOI: 10.13264/j.cnki.ysjskx.2024.01.001
    [3]LIU Li, YANG Tianhui, ZHOU Xi, MENG Ranhao. Effect of hydride on the hydrogen storage performance of Mg2Ni based alloys[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 825-832. DOI: 10.13264/j.cnki.ysjskx.2023.06.010
    [4]GUO Ziting, HUANG Jinchao, XIAO Qingmei, ZHONG Shengwen. Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 227-234. DOI: 10.13264/j.cnki.ysjskx.2023.02.009
    [5]WANG Buxiang, SHU Qing. Research progress in single-atomic electrocatalytic hydrogen evelution reaction catalyst[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 92-100. DOI: 10.13264/j.cnki.ysjskx.2022.05.011
    [6]YU Boyuan, ZHANG Jialiang, YANG Cheng, WANG Lihua, CHEN Yongqiang, WANG Chengyan. Research advances on valuable metals recovery from spent hydrogenation catalyst[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 16-24, 51. DOI: 10.13264/j.cnki.ysjskx.2020.05.003
    [7]YE Shewen, PENG Wenkun, PENG Ziyang, OU Ziran, GUO Ziting, ZENG Qinqin, YANG Hui. Nitrogen-doped carbon-supported ultrafine molybdenum carbide hydrogen evolution reaction catalyst[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 33-38. DOI: 10.13264/j.cnki.ysjskx.2020.03.004
    [8]DAI Yanni, LIU Gonggang, LI Wen, HAN Kai, ZHOU Yonghua, YE Hongqi. A core-shell structured Al-Si@Al2O3 as novel catalyst support and its catalytic application[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 42-48. DOI: 10.13264/j.cnki.ysjikx.2016.05.008
    [9]LU Lixin, WANG Xindong. Preparation and stability of patinum-loaded graphene catalyst[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 40-44. DOI: 10.13264/j.cnki.ysjskx.2015.03.008
    [10]YU Chang-lin, ZHANG Cai-xia, CHEN Xi-rong, XIAO You-jun. The Effects of Zr on the Performance of Pt-Sn/γ-Al2O3 Catalyst for Catalytic Dehydrogenation[J]. Nonferrous Metals Science and Engineering, 2010, 1(01): 24-26, 48.
  • Cited by

    Periodical cited type(2)

    1. 赵振刚,牛文辉,姚正银,侯敏杰,解志鹏,张达,梁风. 基于Na-BP-DME@C阳极的长寿命准固态钠-空气电池. 有色金属科学与工程. 2024(02): 204-211 . 本站查看
    2. 李梦雨,姜淑文,田艳. 碳化钨/碳复合纤维制备及其电解水析氢性能. 大连工业大学学报. 2024(02): 152-156 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (141) PDF downloads (10) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return