Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHANG Jing, HUANG Qizhou, FANG Wenhua, YANG Qing. Numerical simulation and process parameters optimization of electromagnetic stirrer with multi-mode magnetic field[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 34-42. DOI: 10.13264/j.cnki.ysjskx.2020.06.005
Citation: ZHANG Jing, HUANG Qizhou, FANG Wenhua, YANG Qing. Numerical simulation and process parameters optimization of electromagnetic stirrer with multi-mode magnetic field[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 34-42. DOI: 10.13264/j.cnki.ysjskx.2020.06.005

Numerical simulation and process parameters optimization of electromagnetic stirrer with multi-mode magnetic field

More Information
  • Received Date: June 07, 2020
  • Published Date: December 30, 2020
  • By designing a multi-mode electromagnetic stirrer, this paper established a three-dimensional numerical model of the multi-mode magnetic field electromagnetic stirrer assisted with the finite element analysis software Ansoft Maxwell. At the same time, the electromagnetic field parameters of the experimental platform are measured by using the Gaussian meter. The comparison of the two models shows that the overall trend is consistent and the numerical deviation is small. It testified the accuracy of the numerical simulation model. The influence of excitation current intensity and frequency on the magnetic induction intensity and electromagnetic force distribution of rotating magnetic field, traveling wave magnetic field and spiral magnetic field are studied and analyzed by using the three-dimensional numerical model, so as to optimize the process parameters.
  • [1]
    王顺成, 郑开宏, 戚文军, 等.电磁搅拌对Al-5Ti-1B的显微组织与晶粒细化能力的影响[J].有色金属科学与工程, 2014, 5(1): 58-62. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201401011
    [2]
    李红光. 360mm×450mm大方坯电磁搅拌强度对齿轮钢碳元素均质性的影响与控制研究[J].钢铁钒钛, 2019, 40(1): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201901031.htm
    [3]
    刘政, 谌庆春, 许鹤君, 等.稀土Y在电磁搅拌条件下对半固态ZL101铝合金初生α相的影响[J].有色金属科学与工程, 2013, 4(6): 92-98. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2013060018
    [4]
    于海岐, 朱苗勇.圆坯结晶器电磁搅拌过程三维流场与温度场数值模拟[J].金属学报, 2008, 44(12): 1465-1473. doi: 10.3321/j.issn:0412-1961.2008.12.011
    [5]
    邓可月, 刘政, 张嘉艺, 等.电磁搅拌下稀土在铝合金熔体中的分布规律[J].有色金属科学与工程, 2016, 7(3): 40-46. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2016030008
    [6]
    李红光. 360mm×450mm大方坯电磁搅拌强度对齿轮钢碳元素均质性的影响与控制研究[J].钢铁钒钛, 2019, 40(1): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201901031.htm
    [7]
    SCHURMANN D, WILLERS B, HACKL G, et al. Experimental study of the mold flow induced by a swirling flow nozzle and electromagnetic stirring for continuous casting of round blooms[J]. Metallurgical and Materials Transactions B, 2019, 50(2): 716-731. doi: 10.1007/s11663-018-1491-5
    [8]
    陈永, 朱苗勇, 蔡可森, 等. 280 mm×380 mm方坯连铸结晶器电磁搅拌数值模拟[J].钢铁钒钛, 2008, 29(2): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT200802012.htm
    [9]
    王学兵, 胡坤太, 仇圣桃, 等.圆坯连铸结晶器电磁搅拌电磁场、流场的数值模拟[J].连铸, 2008, 33(2): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-LANG200802017.htm
    [10]
    吉光, 高秀华, 张洪才, 等.凝固末端电磁搅拌位置优化及其对高碳钢连铸圆坯内部质量的影响[J].热加工工艺, 2018, 47(9): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201809010.htm
    [11]
    王亚非, 贾华, 袁日栋.电磁搅拌器磁场形态研究及选择[J].铸造技术, 2018, 39(7): 1549-1553. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201807050.htm
    [12]
    马忠存, 熊洪进, 郭鑫.结晶器内磁感应强度分布研究[J].黑龙江冶金, 2015, 35(5): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYJ201505002.htm
    [13]
    董雪明, 龙祖洪, 梁云竹, 等.角速度波动率校准方法初探[J].航空计测技术, 2004, 24(5): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJC200405002.htm
    [14]
    张晓文.基于有限元法的盘式无铁心永磁同步电动机的参数计算[D].天津: 天津大学, 2007.
    [15]
    侯淑萍.新型高性能电工材料应用特性模块化与自学习建模技术研究[D].天津: 河北工业大学, 2009.
    [16]
    王宏斌, 底根顺, 李建峰, 等.宣钢炼钢连铸工艺优化和技术改造[J].冶金标准化与质量, 2007, 45(2): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YJBL200702014.htm
    [17]
    MAURYA A, JHA P K. Two-phase analysis of interface level fluctuation in continuous casting mold with electromagnetic stirring[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2018, 28(9): 2036-2051. doi: 10.1108/HFF-08-2017-0310
    [18]
    赵倩.螺旋磁场搅拌对合金内在质量影响的模拟与实验研究[D].大连: 大连理工大学, 2013.
    [19]
    刘洋, 王新华.二冷区电磁搅拌对连铸板坯中心偏析的影响[J].北京科技大学学报, 2007, 29(6): 582-585. doi: 10.3321/j.issn:1001-053X.2007.06.008
    [20]
    韩玉杰. 5A02铝合金板材磁脉冲成形流动规律研究[D].哈尔滨: 哈尔滨工业大学, 2013.
    [21]
    龚锋.电磁场作用下定向凝固过程流动、传热、传质的耦合数值模拟[D].西安: 西北工业大学, 2006.
  • Related Articles

    [1]GUO Hao, WANG Yajie, ZHAO Hongbo, ZUO Haibin. Numerical simulation of pulverized coal forming process[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 357-363. DOI: 10.13264/j.cnki.ysjskx.2024.03.006
    [2]LUO Xuan, FENG Yusheng, PANG Qishou. Numerical simulation of the influence of blade layer number on the stirring characteristics in draft tube stirred tank[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 728-733. DOI: 10.13264/j.cnki.ysjskx.2023.05.016
    [3]NIE Jincheng, YE Jieyun, WANG Zhigang, HE Xiaoxuan, CHEN Zihui. Casting process optimization of martensitic stainless steel baffle based on ProCAST numerical simulation[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 27-33. DOI: 10.13264/j.cnki.ysjskx.2020.06.004
    [4]DENG Keyue, LIU Zheng, ZHANG Jiayi, WU Qiang. Distribution rule of rare earth in aluminum melt under electromagnetic stirring[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 40-46. DOI: 10.13264/j.cnki.ysjskx.2016.03.008
    [5]CHENG Qiuting, DENG Fei, CHEN Yanhong, XIA Yijiang, WANG Xiaojun. Numerical simulation analysis on the stability of mined-out area[J]. Nonferrous Metals Science and Engineering, 2015, (2): 85-88. DOI: 10.13264/j.cnki.ysjskx.2015.02.016
    [6]FENG Kai, ZHONG Jian-hua, TANG Zhi-li. The 3-D numerical simulation of heat transfer process for multi-start spiral pipe[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 95-98. DOI: 10.13264/j.cnki.ysjskx.2012.03.006
    [7]RAO Yun-zhang, CHEN Hui, XIAO Guang-zhe, CHEN Guo-liang. On the Design of Stope Bottom Structures Based on FLAC 3D Numerical Simulation[J]. Nonferrous Metals Science and Engineering, 2011, 2(2): 43-47. DOI: 10.13264/j.cnki.ysjskx.2011.02.009
    [8]XU Cong-wu, ZHAO Kui, XIE Dao-hui. Numerical Simulation Research on Tunnel Arrangement in Schistosity Rock[J]. Nonferrous Metals Science and Engineering, 2008, 22(3): 6-8.
    [9]CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17.
    [10]QIAO Jun-yu, XU Guo-yuan. Numerical Simulation in Reinforcement for Deep Foundation Pit with Soil Nailing[J]. Nonferrous Metals Science and Engineering, 2005, 19(4): 24-24.

Catalog

    Article Metrics

    Article views (141) PDF downloads (10) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return