Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LUO Xiaojuan, LUO Kai, ZHONG Zhaohuang, LI Xindong. Treatment of ionic rare earth smelting wastewater by a membrane bioreactor based on aerobic granular sludge[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 439-446. DOI: 10.13264/j.cnki.ysjskx.2023.03.017
Citation: LUO Xiaojuan, LUO Kai, ZHONG Zhaohuang, LI Xindong. Treatment of ionic rare earth smelting wastewater by a membrane bioreactor based on aerobic granular sludge[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 439-446. DOI: 10.13264/j.cnki.ysjskx.2023.03.017

Treatment of ionic rare earth smelting wastewater by a membrane bioreactor based on aerobic granular sludge

More Information
  • Received Date: August 21, 2022
  • Revised Date: October 16, 2022
  • Available Online: June 30, 2023
  • Organic wastewater from rare earth smelting is a high-concentration acid with great harmfulness and complex water quality. The main pollutants include organic matter, ammonia nitrogen, suspended matter, inorganic salts, and heavy metals, so it is of great significance to study how to effectively treat organic wastewater from rare earth smelting to protect water and soil. A sequential batch membrane bioreactor (SBR-MBR) was constructed, combining with aerobic granular sludge (AGS) to form an aerobic granular sludge membrane bioreactor (AGS-MBR). On this basis, the effect of different C/N ratios (the ratio of total contents of carbon to nitrogen in organic matter C/N) on the AGS-MBR treatment process was studied. The results show that when C/N is 10, the aerobic granular sludge has the best stability, with the removal rates of COD, NH4+-N, TN and TP at 99.0%, 96.7%, 79.3% and 91.1%, respectively. The decrease in influent C/N has little influence on the removal of COD by AGS-MBR but has a great effect on the form of effluent N and TP. When C/N≤7, part of the aerobic granular sludge disintegrates, and the effluent TN and TP concentrations meet the requirements of Grade A discharge standard GB 18918—2002(2006) in the Pollutant Discharge Standard for Urban Sewage Treatment Plants, which provides a theoretical basis for further research on the treatment of organic wastewater from rare earth smelting with lower C/N ratios.
  • [1]
    池汝安, 田君, 罗仙平, 等. 风化壳淋积型稀土矿的基础研究[J]. 有色金属科学与工程, 2012, 3(4): 1-13. doi: 10.13264/j.cnki.ysjskx.2012.04.010
    [2]
    吴昊, 邱廷省, 严华山. 降低离子型稀土原地浸矿残留稀土的对策探讨[J]. 有色金属科学与工程, 2021, 12(2): 105-112. doi: 10.13264/j.cnki.ysjskx.2021.02.014
    [3]
    邹国良, 刘娜娜. 基于组合赋权-云模型的离子型稀土矿开采工艺评价[J]. 有色金属科学与工程, 2021, 12(4): 88-95. doi: 10.13264/j.cnki.ysjskx.2021.04.012
    [4]
    PACKEY D J, KINGSNORTH D. The impact of unregulated ionic clay rare earth mining in China[J]. Resources Policy, 2016, 48: 112-116. doi: 10.1016/j.resourpol.2016.03.003
    [5]
    晏波, 黄海明, 肖贤明. 离子型稀土冶炼废水资源回收及达标排放处理工艺研究[J]. 环境工程学报, 2010(1): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201001014.htm
    [6]
    QIU T S, ZHU D M, FANG X H, et al. Leaching kinetics of ionic rare-earth in ammonia-nitrogen wastewater system added with impurity inhibitors[J]. Journal of Rare Earths, 2014, 32(12): 1175-1183. doi: 10.1016/S1002-0721(14)60200-3
    [7]
    REN S G, HUANG S Y, LIU B X. Enhanced removal of ammonia nitrogen from rare earth wastewater by NaCl modified vermiculite: performance and mechanism[J]. Chemosphere, 2022, 302: 134742. doi: 10.1016/j.chemosphere.2022.134742
    [8]
    QIU T S, LIU Q S, FANG X H, et al. Characteristic of synergistic extraction of oxalic acid with system from rare earth metallurgical wastewater[J]. Journal of Rare Earths, 2010, 28(6): 858-861. doi: 10.1016/S1002-0721(09)60224-6
    [9]
    曾玉, 龙焙, 张斌超, 等. 自养硝化颗粒污泥吸附铅离子机理研究[J]. 江西冶金, 2022, 42(1): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYE202201010.htm
    [10]
    蔚龙凤, 陈乡, 王海珍, 等. 离子型稀土冶炼废水处理工艺研究[J]. 湿法冶金, 2015, 34(3): 245-248. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201503022.htm
    [11]
    张选旭. 离子型稀土矿冶炼分离生产取水定额调研分析及研究[J]. 有色金属科学与工程, 2021, 12(2): 113-119. doi: 10.13264/j.cnki.ysjskx.2021.02.015
    [12]
    韩正昌, 刘大才, 马军军, 等. 离子型稀土冶炼萃取废水处理工艺研究[J]. 世界有色金属, 2013(10): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201310006.htm
    [13]
    覃伟宁, 肖羽堂. 两级氧化法处理稀土矿山氨氮废水工程实例[J]. 工业水处理, 2020, 40(1): 100-104. https://www.cnki.com.cn/Article/CJFDTOTAL-GYSC202001026.htm
    [14]
    董炎, 敬双怡, 殷震育, 等. 稀土氨氮废水的厌氧氨氧化处理试验研究[J]. 湿法冶金, 2021, 40(1): 72-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ202101019.htm
    [15]
    莫国荣, 张亮玖. 离子型稀土冶炼萃取废水处理工艺研究[J]. 冶金与材料, 2019(1): 59-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYJ201901032.htm
    [16]
    王浩, 成官文, 宋晓薇, 等. 化学沉淀法去除稀土湿法冶炼废水中钙与高浓度氨氮研究[J]. 环境科学, 2013, 34(7): 2718-2728. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201307032.htm
    [17]
    桂双林, 麦兆环, 付嘉琦, 等. 超滤膜处理稀土冶炼废水过程膜污染特性分析[J]. 膜科学与技术, 2020, 40(5): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-MKXY202005014.htm
    [18]
    欧阳果仔, 李新冬, 包亚晴, 等. 膜分离技术处理离子型稀土冶炼废水研究进展[J]. 现代化工, 2020, 40(8): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG202008007.htm
    [19]
    贺绍鑫, 温皓, 王东羽, 等. 不同絮凝剂对黑臭底泥沉降及脱水性能的影响[J]. 江西冶金, 2022, 42(2): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYE202202012.htm
    [20]
    LV Y, YAN H Y, YANG B J, et al. Bipolar membrane electrodialysis for the recycling of ammonium chloride wastewater: Membrane selection and process optimization[J]. Chemical Engineering Research and Design, 2018, 138: 105-115.
    [21]
    REIS B G, SILVEIRA A L, LEBRON Y A R, et al. Comprehensive investigation of landfill leachate treatment by integrated Fenton/microfiltration and aerobic membrane bioreactor with nanofiltration[J]. Process Safety and Environmental Protection, 2020, 143: 121-128.
    [22]
    GUO T, JI Y, ZHAO J W, et al. Coupling of Fe-C and aerobic granular sludge to treat refractory wastewater from a membrane manufacturer in a pilot-scale system[J]. Water Research, 2020, 186: 116331.
    [23]
    CHEN W M, LUO Y F, RAN G, et al. An investigation of refractory organics in membrane bioreactor effluent following the treatment of landfill leachate by the O3/H2O2 and MW/PS processes[J]. Waste Management, 2019, 97: 1-9.
    [24]
    LIU J B, ZHANG H B, ZHANG P Y, et al. Two-stage anoxic/oxic combined membrane bioreactor system for landfill leachate treatment: Pollutant removal performances and microbial community[J]. Bioresource Technology, 2017, 243: 738-746.
    [25]
    ZOLFAGHARI M, JARDAK K, DROGUI P, et al. Landfill leachate treatment by sequential membrane bioreactor and electro-oxidation processes[J]. Journal of Environmental Management, 2016, 184: 318-326.
  • Related Articles

    [1]DU Gang, LI Canhua, DENG Aijun, WANG Xiaoping, ZHANG Lanyue, LI Minghui. Experimental study of direct reduction-magnetic separation of JISCO compound dust ash[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 497-504. DOI: 10.13264/j.cnki.ysjskx.2024.04.004
    [2]LEI Yu, HU Xinbo, ZHU Chuncheng, XU Qian, SUN Chenteng, ZOU Xingli, CHENG Hongwei, LU Xionggang. Mechanism of ultrasound-assisted replacement for copper removal based on products morphology[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 180-188. DOI: 10.13264/j.cnki.ysjskx.2024.02.004
    [3]ZENG Yu, ZENG Minjing, CHENG Yuanyuan, LONG Bei, LI Xindong, ZHANG Binchao, HUANG Sinong, YI Mingru, LIN Shutao, CHEN Yueru. Cultivation of aerobic granular sludge and its degradation effect on low C/N ratio wastewater[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 104-111. DOI: 10.13264/j.cnki.ysjskx.2021.04.014
    [4]PENG Zhongping, SHEN Qianghua, XIE Wendong, ZHANG Zhou, LEI Jinqi. Research status of arsenic and antimony removal in copper refining process[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 28-33. DOI: 10.13264/j.cnki.ysjskx.2021.01.005
    [5]ZHANG Binchao, HUANG Sinong, ZENG Minjing, LIN Shutao, ZHANG Linan, ZENG Yu, CHENG Yuanyuan, LONG Bei. Recovery of aerobic granular sludge in a sequencing batch reactor by inoculating stored granules with different storage methods[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 104-111. DOI: 10.13264/j.cnki.ysjskx.2020.02.015
    [6]LI Wei, ZHANG Xiaolin, NING Rui. Experimental study on thallium removal from ammonium perrhenate[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 21-25. DOI: 10.13264/j.cnki.ysjskx.2019.03.004
    [7]ZHANG Linan, XUAN Xinpeng, CHENG Yuanyuan, WANG Jianqi, HUANG Sinong, LONG Bei. Effect of pH on stability of aerobic granular sludge[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 87-91. DOI: 10.13264/j.cnki.ysjskx.2019.01.014
    [8]LIN Qingshan, WANG Jingsong, XUE Qingguo, YUAN Xiaotao, PAN Yuzhu. Research on thermodynamic model for the removal of carbon dioxide in blast furnace gas by hydrate method[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 1-6. DOI: 10.13264/j.cnki.ysjskx.2018.05.001
    [9]CHEN Guoliang, HUANG Yonggang, SHAO Yajian, LI Xuezhen, RAO Yunzhang. Based on the response surface optimization method of a certain mine filling ratio optimization[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 73-76. DOI: 10.13264/j.cnki.ysjskx.2016.02.013
    [10]YAN Qun, YU Yang, ZHOU Na-na. Research development of arsenic removal from drinking water[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 74-79. DOI: 10.13264/j.cnki.ysjskx.2012.03.003
  • Cited by

    Periodical cited type(4)

    1. 姚丽,钟盛文. 生物质吸附剂吸附回收硫脲废液中金的研究. 矿冶工程. 2024(04): 223-228 .
    2. 吴恒,李佳芮,杨天宇,黄冰冰,邢志林. 生物技术在有色冶金废水处理中的应用. 中国有色冶金. 2024(06): 144-151 .
    3. 王忠锋,冯羽生,黄伟玲. 不同结构组态对导流筒搅拌槽混合效率影响分析. 有色金属科学与工程. 2024(06): 814-821+855 . 本站查看
    4. 蔚龙凤,王海珍. 螯合沉淀法去除稀土冶炼废水中的重金属试验研究. 湿法冶金. 2023(06): 644-649 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (149) PDF downloads (18) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return