Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
SUN Kailei, WANG Xu, CAI Boqing, LIAO Chunfa, SHI Zhongning. Molecular dynamics simulation evaluation on viscosity of typical alkali metal fluorine salts[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 24-29. DOI: 10.13264/j.cnki.ysjskx.2023.01.004
Citation: SUN Kailei, WANG Xu, CAI Boqing, LIAO Chunfa, SHI Zhongning. Molecular dynamics simulation evaluation on viscosity of typical alkali metal fluorine salts[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 24-29. DOI: 10.13264/j.cnki.ysjskx.2023.01.004

Molecular dynamics simulation evaluation on viscosity of typical alkali metal fluorine salts

More Information
  • Received Date: February 27, 2022
  • Revised Date: May 01, 2022
  • Available Online: March 13, 2023
  • The molten salt viscosity of alkali metal fluoride LiF, NaF and KF was calculated by molecular dynamics simulation method, the results of which were evaluated by measured values. The results show that on the basis of the van der Waals potential, as the core-shell model Coulomb potential is introduced, and the polarization energy added as the potential function, the viscosity at different temperature points in the range of 1 100~1 700 K is calculated by Gromacs software according to the principle of energy dissipation, which can accurately express the qualitative relationship between temperature, alkali metal ion radius and viscosity. The calculated results have systematic negative deviation from the measured values. The main reasons and solutions are as follows. ① Newtonian fluid model is applied to LiF, NaF, KF viscosity description model of molten salt system in the calculation process, while the actual LiF, NaF and KF molten salt system is a quasi-Newtonian fluid, so it is necessary to add a correction term to the ion acceleration equation. ② Coulomb constant β, polarizability α and nuclear charge qcore are the key parameters to determine the calculation accuracy. The basic value of the Coulomb constant β, as well as the matching relationship between reasonable nuclear charge quantity qcore and polarizability α have a significant impact on the calculated results.
  • [1]
    CHENG J H, ZHANG P, AN X H, et al. A device for measuring the density and liquidus temperature of molten fluorides for heat transfer and storage[J]. Chinese Physics Letters, 2013, 30(12): 126501. doi: 10.1088/0256-307X/30/12/126501
    [2]
    GU Y, LIU J, QU S, et al. Electrodeposition of alloys and compounds from high-temperature molten salts[J]. Journal of Alloys and Compounds, 2017, 690: 228-238. doi: 10.1016/j.jallcom.2016.08.104
    [3]
    SERP J, ALLIBERT M, BENEŠ O, et al. The molten salt reactor (MSR) in generation Ⅳ: Overview and perspectives[J]. Progress in Nuclear Energy, 2014, 77: 308-319. doi: 10.1016/j.pnucene.2014.02.014
    [4]
    WALDROP, MITCHELL M. Nuclear energy: Radical reactors[J]. Nature, 2012, 492(7427): 26-29. doi: 10.1038/492026a
    [5]
    MYASNIKOV A, PONOMAREV L. Molten salt fast reactor with U-Pu fuel cycle[J]. Progress in Nuclear Energy, 2015, 82: 33-36. doi: 10.1016/j.pnucene.2014.07.014
    [6]
    CHEN Y, WU Y, REN N, et al. Experimental study of viscosity characteristics of high-temperature heat transfer molten salts[J]. Science China Technological Sciences, 2011, 54(11): 3022-3026. doi: 10.1007/s11431-011-4530-x
    [7]
    CHEN M, RAGHUNATH S, ZHAO B. Viscosity measurements of SiO2-"FeO"-MgO system in equilibrium with metallic Fe[J]. Metallurgical and Materials Transactions B, 2014, 45(1): 58-65. doi: 10.1007/s11663-013-9917-6
    [8]
    INMAN D, WHITE S H. The production of refractory metals by the electrolysis of molten salts; design factors and limitations[J]. Journal of Applied Electrochemistry, 1978, 8(5): 375-390. doi: 10.1007/BF00615833
    [9]
    DANĚK, VLADIMÍR. Physico-chemical analysis of molten electrolytes[M]. Elsevier B. V, 2006(8): 327-357.
    [10]
    姜艳丽, 唐鑫, 高凡. 冰晶石-氧化铝熔盐的分子动力学研究[J]. 原子与分子物理学报, 2016, 33(2): 325-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YZYF201602024.htm
    [11]
    贺国达, 汤睿, 段学志, 等. LiF-BeF2熔盐微观结构及扩散特性的分子动力学研究[J]. 化工学报, 2020, 71(8): 3565-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ202008018.htm
    [12]
    陈应斌, 陈金辉, 博胡, 等. KF-NaF-AlF3体系结构性质的分子动力学模拟[J]. 冶金工程, 2021, 8(2): 67-75. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201503002.htm
    [13]
    CHRENKOVÁ M, DANĚK V, SILNý A, et al. Density and viscosity of the (LiF-NaF-KF)eut-KBF4-B2O3 melts[J]. Journal of Molecular Liquids, 2003, 102(1/2/3): 213-226.
    [14]
    TOERKLEP K, OEYE H A. Viscosity of the eutectic lithium fluoride-sodium fluoride-potassium fluoride melt (FLINAK)[J]. Journal of Chemical & Engineering Data, 2002, 25(1): 16-17.
    [15]
    CIBULKOVÁ J, CHRENKOVÁ M, VASILJEV R, et al. Density and viscosity of the (LiF+NaF+KF)eut(1)+K2TaF7(2)+Ta2O5 (3) melts[J]. Journal of Chemical & Engineering Data, 2006, 51(3): 984-987.
    [16]
    JANZ G J. Thermodynamic and transport properties for molten salts: correlation equations for critically evaluated density, surface tension, electrical conductance, and viscosity data[J]. Journal of Physical Chemical Reference Data, 1988, 17(5): 17.
    [17]
    AN X, CHENG J, SU T, et al. Determination of thermal physical properties of alkali fluoride/carbonate eutectic molten salt[J]. AIP Conference Proceedings, 2017, 1850(1): 1-7.
    [18]
    PRONK S, PALL S, SCHULZ R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit[J]. Bioinformatics, 2013, 29(7): 845-854. doi: 10.1093/bioinformatics/btt055
    [19]
    WALZ M M, GHAHREMANPOUR M M, VAN MAAREN P J, et al. Phase-transferable force field for alkali halides[J]. Journal Chemical Theory Comput, 2018, 14(11): 5933-5948. doi: 10.1021/acs.jctc.8b00507
    [20]
    WANG L P, CHEN J, VAN VOORHIS T. Systematic parametrization of polarizable force fields from quantum chemistry data[J]. Journal Chemical Theory Comput, 2013, 9(1): 452-460. doi: 10.1021/ct300826t
    [21]
    POPESCU A M, CONSTANTIN V. Viscosity of alkali fluoride ionic melts at temperatures up to 373.15 K above melting points[J]. Chemical Engineering Communications, 2014, 202(12): 1703-1710.
    [22]
    EJIMA T, SATO Y, YAEGASHI S, et al. Viscosity of molten alkali fluorides[J]. Journal of the Japan Institute of Metals, 1987, 51(4): 328-337.
    [23]
    BROCKNER W, TøRKLEP K, øYE H A. Viscosity of sodium fluoride-aluminium fluoride melt mixtures[J]. Berichte der Bunsengesellschaft für Physikalische Chemie, 1979, 83(1): 12-19.
  • Related Articles

    [1]YAO Mingcan, LI Tianyu, HU Jin, FU Fangzhong, LIN Jiahao, FAN Helin, WANG Ruixiang, XU Zhifeng. Structure and transport properties of FeO-SiO2 melt[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 17-24. DOI: 10.13264/j.cnki.ysjskx.2025.01.003
    [2]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [3]JIN Jiefang, YU Xiong, ZHONG Yilu. Energy dissipation characteristics of red sandstone with different water content during impact loading[J]. Nonferrous Metals Science and Engineering, 2021, 12(5): 69-80. DOI: 10.13264/j.cnki.ysjskx.2021.05.009
    [4]FAN Jie, XIE Gang, TIAN Lin, YU Xiaohua, WANG Bingbing, WANG Pinjie. Calculation of first principles of electron structure of Fe2+ doped sphalerite and its influence on mineral leaching[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 1-7. DOI: 10.13264/j.cnki.ysjskx.2021.02.001
    [5]GAN Minglong, LI Yameng, FU Junxiang. Phase transition and upconversion luminescent properties of NaYF4: Yb, Er@SiO2 at high temperature[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 75-80. DOI: 10.13264/j.cnki.ysjskx.2021.01.010
    [6]TONG Zhifang, LiN Xin, ZENG Qingpo. Dissipative particle dynamics of the sadsorption propertiesof compound additives on the surface of dicalcium silicate[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 1-8. DOI: 10.13264/j.cnki.ysjskx.2020.04.001
    [7]QU Miao, LIU Yu, XIAO Zhengbing. A first principle study on the basic properties of inclusions in aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 1-10. DOI: 10.13264/j.cnki.ysjskx.2018.06.001
    [8]YUAN Wei, JIN Jie-fang, LIANG Chen, WANG Jie, He Cong, CHENG Yun. Numerical Analysis of Dynamic Damage and Energy Dissipation Characteristics of Concrete under Confining Pressure[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 98-104. DOI: 10.13264/j.cnki.ysjskx.2017.04.017
    [9]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [10]LI Qin, LUO Yang, YE Xinyu, HUANG Xin. Application progress of first-principles calculations in CALPHAD technology[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 37-46. DOI: 10.13264/j.cnki.ysjskx.2015.06.008

Catalog

    Article Metrics

    Article views (177) PDF downloads (23) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return