Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LI Zhongchen, WANG Qinmeng, TIAN Qinghua, GUO Xueyi. Study on the preparation of iron concentrate from copper smelting slag[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 1-9. DOI: 10.13264/j.cnki.ysjskx.2022.04.001
Citation: LI Zhongchen, WANG Qinmeng, TIAN Qinghua, GUO Xueyi. Study on the preparation of iron concentrate from copper smelting slag[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 1-9. DOI: 10.13264/j.cnki.ysjskx.2022.04.001

Study on the preparation of iron concentrate from copper smelting slag

More Information
  • Received Date: August 29, 2021
  • Revised Date: October 09, 2021
  • Available Online: September 02, 2022
  • Aiming at the problem of inefficient utilization of iron resources in flotation tailings of copper smelting slag, the distribution behavior and law of iron and silicon in the process of low-temperature alkaline smelting and leaching were studied, and the optimized process conditions were determined to prepare iron concentrate. The effects of melting time, melting temperature, the alkali-slag-ratio on the separation of silicon and iron and leaching time, liquid-solid ratio, and leaching temperature on the multielement leaching rate were studied. The optimum technological parameters were a melting temperature of 550℃, a melting time of 1.5 h, an alkali-slag mass ratio of 1.5:1, a leaching temperature of 40℃, the leaching time of 20 min, and a liquid-solid ratio of 15:1 mL/g. In the low-temperature alkaline smelting-leaching process, the total recovery rates of Fe and Si reached 99.43% and 91.22%, respectively. The iron grade of the iron concentrate was 61.82%, which met the iron standard of the third-grade iron concentrate in GB/T 25953-2010, and the content of all impurities except copper was lower than the limit value in the first-grade standard, which could be directly used in the iron and steel industry.
  • [1]
    赵凯, 程相利, 齐渊洪, 等. 配碳还原回收铜渣中铁、铜的影响因素探讨[J]. 环境工程, 2012, 30(2): 76-78, 113. doi: 10.3969/j.issn.1671-1556.2012.02.018
    [2]
    曹志成, 孙体昌, 吴道洪, 等. 转底炉直接还原铜渣回收铁、锌技术[J]. 材料与冶金学报, 2017, 16(1): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HUJI201701007.htm
    [3]
    GORAI B, JANA R K, PREMCHAND. Characteristics and utilisation of copper slag-a review[J]. Resources, Conservation and Recycling, 2003, 39(4): 299-313. doi: 10.1016/S0921-3449(02)00171-4
    [4]
    谭晓恒, 郭少毓, 喻相标, 等. 焙烧铜渣中磁铁矿的物性转变研究[J]. 有色金属科学与工程, 2020, 11(5): 83-89. doi: 10.13264/j.cnki.ysjskx.2020.05.012
    [5]
    刘金生, 姜平国, 肖义钰, 等. 从铜渣中回收铁的研究现状及其新方法的提出[J]. 有色金属科学与工程, 2019, 10(2): 19-24. doi: 10.13264/j.cnki.ysjskx.2019.02.004
    [6]
    DHIR R K, BRITO J D, MANGABHAI R, et al. Sustainable construction materials: copper slag[M]. UK: Woodhead Publishing, 2016.
    [7]
    NAJIMI M, POURKHORSHIDI A R. Properties of concrete containing copper slag waste[J]. Magazine of Concrete Research, 2011, 63(8): 605-615. doi: 10.1680/macr.2011.63.8.605
    [8]
    LONG T V, PALACIOS J, SANCHES M, et al. Recovery of molybdenum from copper slag[J]. Tetsu-to-Hagane, 2012, 98(2): 48-54. doi: 10.2355/tetsutohagane.98.48
    [9]
    王维, 许向群, 李杰, 等. 磷石膏与铜尾渣的高效耦合固定/稳定化处理[J]. 硅酸盐通报, 2021, 40(5): 1601-1609.
    [10]
    侯霖杰, 孟昕阳, 王宏宇, 等. 铜渣改质、磁选及磁选尾渣制备陶瓷的基础研究[J]. 有色金属科学与工程, 2021, 12(2): 23-29. doi: 10.13264/j.cnki.ysjskx.2021.02.004
    [11]
    HEO J H, CHUNG Y, PARK J H. Recovery of iron and removal of hazardous elements from waste copper slag via a novel aluminothermic smelting reduction (ASR) process[J]. Journal of Cleaner Production, 2016, 137: 777-787. doi: 10.1016/j.jclepro.2016.07.154
    [12]
    YANG Z H, LIN Q, LU S C, et al. Effect of CaO/SiO2 ratio on the preparation and crystallization of glass-ceramics from copper slag[J]. Ceramics International, 2014, 40(5): 7297-7305. doi: 10.1016/j.ceramint.2013.12.071
    [13]
    HE R X, ZHANG S Y, ZHANG X L, et al. Copper slag: the leaching behavior of heavy metals and its applicability as a supplementary cementitious material[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105132. doi: 10.1016/j.jece.2021.105132
    [14]
    HONG C W, LEE J I, RYU J H. Effect of copper slag as a fine aggregate on the properties of concrete[J]. Journal of Ceramic Processing Research, 2017, 18(4): 324-328.
    [15]
    ANJOS M, SALES A, ANDRADE N. Blasted copper slag as fine aggregate in Portland cement concrete[J]. Journal of Environmental Management, 2017, 196: 607-613.
    [16]
    EDWIN R S, SCHEPPER M D, GRUYAERT E, et al. Effect of secondary copper slag as cementitious material in ultra-high performance mortar[J]. Construction & Building Materials, 2016, 119: 31-44.
    [17]
    鲁兴武, 桑利, 何国才, 等. 选矿后含铜尾渣选择性浸出的研究[J]. 有色金属(冶炼部分), 2014(9): 5-7. doi: 10.3969/j.issn.1007-7545.2014.09.002
    [18]
    王爽, 倪文, 王长龙, 等. 铜尾渣深度还原回收铁工艺研究[J]. 金属矿山, 2014(3): 156-160. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201403035.htm
    [19]
    王建雄, 张淑敏, 李艳军, 等. 鞍山某铁矿石磁选-反浮选试验研究[J]. 矿产保护与利用, 2021, 41(3): 150-154. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH202103023.htm
    [20]
    韩珍堂. 中国钢铁工业竞争力提升战略研究[D]. 北京: 中国社会科学院研究生院, 2014.
    [21]
    侯永丰. 浅谈中国进口铁矿石定价机制及变化趋势[J]. 现代营销(经营版), 2021(7): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-XIXJ202107007.htm
    [22]
    SHEN L, QIAO Y, GUO Y, et al. Preparation and formation mechanism of nano-iron oxide black pigment from blast furnace flue dust[J]. Ceramics International, 2013, 39(1): 737-744. doi: 10.1016/j.ceramint.2012.06.086
    [23]
    LI D X, GAO G L, MENG F L, et al. Preparation of nano-iron oxide red pigment powders by use of cyanided tailings[J]. Journal of Hazardous Materials, 2008, 155(1/2): 369-377.
    [24]
    LEGODI M A, DE WAAL D. The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste[J]. Dyes and Pigments, 2007, 74(1): 161-168. doi: 10.1016/j.dyepig.2006.01.038
    [25]
    MADHESWARAN C K, AMBILY P S, DATTATREYA J K, et al. Studies on use of copper slag as replacement material for river sand in building constructions[J]. Journal of the Institution of Engineers (India): Series A, 2014, 95(3): 169-177. doi: 10.1007/s40030-014-0084-9
    [26]
    国家质量监督检验检疫总局, 中国国家标准化管理委员会. 有色金属选矿回收铁精矿: GB/T 25953-2010[S]. 北京: 中国标准出版社, 2011.
    [27]
    古国榜, 李朴. 无机化学[M]. 2版. 北京: 化学工业出版社, 2007.
    [28]
    WANG Q M, LI Z C, LI D, et al. A method of high-quality silica preparation from copper smelting slag[J]. JOM, 2020, 72(7): 2676-2685. doi: 10.1007/s11837-020-04196-3
  • Related Articles

    [1]WEN Tanggen, ZHANG Bin, ZHANG Jiawei, LI Mingzhou, YANG Shaohua. Numerical simulation of multiphase flow in 6 kA neodymium electrolytic cell[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 706-715. DOI: 10.13264/j.cnki.ysjskx.2023.05.014
    [2]PANG Qishou, XIN Zhilin, LIN Xiaocheng, GONG Yaoteng, WANG Zhiyang. Numerical simulation of the electrochemical 3D time-varying flow field in a rare earth electrolytic cell[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 152-158. DOI: 10.13264/j.cnki.ysjskx.2022.03.019
    [3]ZHANG Hong-liang, LIANG Jin-ding, XU Yu-jie, LI Jie. Simulation of strong coupling electromagnetic current in aluminum reduction cells and its application in new cathodes[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 26-33. DOI: 10.13264/j.cnki.ysjskx.2017.05.004
    [4]LI Mingzhou, HUANG Jindi, TONG Changren, ZHANG Wenhai, LI Junbiao, WANG Jinliang. Numerical analysis of thermal-electrical fields in copper electrolytic cell[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 50-55. DOI: 10.13264/j.cnki.ysjskx.2016.06.009
    [5]WANG Jinliang, YANG Yiqing. Analysis of the electric field in rare earth molten salt electrolytic cell based on Comsol[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 30-34. DOI: 10.13264/j.cnki.ysjskx.2016.06.006
    [6]CHEN Yan-xin, PENG Shao-hua, ZHOU Ai-guo. The application of small box-fastener in rare earth electrolysis[J]. Nonferrous Metals Science and Engineering, 2012, 3(1): 49-52. DOI: 10.13264/j.cnki.ysjskx.2012.01.020
    [7]XING Li, HE Jian-zhong, GAO De-jin, HANG Chang-qing, FENG Feng-ming, XING Hua. Development and Application of Pre-baked Anode Electrolytic Cell Clamping Conductive Fixture[J]. Nonferrous Metals Science and Engineering, 2010, 24(3-4): 164-169.
    [8]DENG Zuo-min, LIN Ping, WANG Jun. The Study about the Relation between Rare-earth-melted-production's Various Factors and Output-rate[J]. Nonferrous Metals Science and Engineering, 2007, 21(3): 33-34,47.
    [9]WANG Jun, DENG Zuo-min, ZHANG Xiao-lian. The Test Research on Energy Balance of10kA Fluoride System in RE Fused-salt Electrolysis Cell[J]. Nonferrous Metals Science and Engineering, 2004, 18(2): 30-32, 37.
    [10]DENG Zou-min, ZHANG Xiao-lian, WAN Jun. Numerical Analysis of Temperature Field in RE Electrolysis Cell[J]. Nonferrous Metals Science and Engineering, 2004, 18(1): 26-27,34.

Catalog

    Article Metrics

    Article views (304) PDF downloads (48) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return