Citation: | LI Zhongchen, WANG Qinmeng, TIAN Qinghua, GUO Xueyi. Study on the preparation of iron concentrate from copper smelting slag[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 1-9. DOI: 10.13264/j.cnki.ysjskx.2022.04.001 |
[1] |
赵凯, 程相利, 齐渊洪, 等. 配碳还原回收铜渣中铁、铜的影响因素探讨[J]. 环境工程, 2012, 30(2): 76-78, 113. doi: 10.3969/j.issn.1671-1556.2012.02.018
|
[2] |
曹志成, 孙体昌, 吴道洪, 等. 转底炉直接还原铜渣回收铁、锌技术[J]. 材料与冶金学报, 2017, 16(1): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HUJI201701007.htm
|
[3] |
GORAI B, JANA R K, PREMCHAND. Characteristics and utilisation of copper slag-a review[J]. Resources, Conservation and Recycling, 2003, 39(4): 299-313. doi: 10.1016/S0921-3449(02)00171-4
|
[4] |
谭晓恒, 郭少毓, 喻相标, 等. 焙烧铜渣中磁铁矿的物性转变研究[J]. 有色金属科学与工程, 2020, 11(5): 83-89. doi: 10.13264/j.cnki.ysjskx.2020.05.012
|
[5] |
刘金生, 姜平国, 肖义钰, 等. 从铜渣中回收铁的研究现状及其新方法的提出[J]. 有色金属科学与工程, 2019, 10(2): 19-24. doi: 10.13264/j.cnki.ysjskx.2019.02.004
|
[6] |
DHIR R K, BRITO J D, MANGABHAI R, et al. Sustainable construction materials: copper slag[M]. UK: Woodhead Publishing, 2016.
|
[7] |
NAJIMI M, POURKHORSHIDI A R. Properties of concrete containing copper slag waste[J]. Magazine of Concrete Research, 2011, 63(8): 605-615. doi: 10.1680/macr.2011.63.8.605
|
[8] |
LONG T V, PALACIOS J, SANCHES M, et al. Recovery of molybdenum from copper slag[J]. Tetsu-to-Hagane, 2012, 98(2): 48-54. doi: 10.2355/tetsutohagane.98.48
|
[9] |
王维, 许向群, 李杰, 等. 磷石膏与铜尾渣的高效耦合固定/稳定化处理[J]. 硅酸盐通报, 2021, 40(5): 1601-1609.
|
[10] |
侯霖杰, 孟昕阳, 王宏宇, 等. 铜渣改质、磁选及磁选尾渣制备陶瓷的基础研究[J]. 有色金属科学与工程, 2021, 12(2): 23-29. doi: 10.13264/j.cnki.ysjskx.2021.02.004
|
[11] |
HEO J H, CHUNG Y, PARK J H. Recovery of iron and removal of hazardous elements from waste copper slag via a novel aluminothermic smelting reduction (ASR) process[J]. Journal of Cleaner Production, 2016, 137: 777-787. doi: 10.1016/j.jclepro.2016.07.154
|
[12] |
YANG Z H, LIN Q, LU S C, et al. Effect of CaO/SiO2 ratio on the preparation and crystallization of glass-ceramics from copper slag[J]. Ceramics International, 2014, 40(5): 7297-7305. doi: 10.1016/j.ceramint.2013.12.071
|
[13] |
HE R X, ZHANG S Y, ZHANG X L, et al. Copper slag: the leaching behavior of heavy metals and its applicability as a supplementary cementitious material[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105132. doi: 10.1016/j.jece.2021.105132
|
[14] |
HONG C W, LEE J I, RYU J H. Effect of copper slag as a fine aggregate on the properties of concrete[J]. Journal of Ceramic Processing Research, 2017, 18(4): 324-328.
|
[15] |
ANJOS M, SALES A, ANDRADE N. Blasted copper slag as fine aggregate in Portland cement concrete[J]. Journal of Environmental Management, 2017, 196: 607-613.
|
[16] |
EDWIN R S, SCHEPPER M D, GRUYAERT E, et al. Effect of secondary copper slag as cementitious material in ultra-high performance mortar[J]. Construction & Building Materials, 2016, 119: 31-44.
|
[17] |
鲁兴武, 桑利, 何国才, 等. 选矿后含铜尾渣选择性浸出的研究[J]. 有色金属(冶炼部分), 2014(9): 5-7. doi: 10.3969/j.issn.1007-7545.2014.09.002
|
[18] |
王爽, 倪文, 王长龙, 等. 铜尾渣深度还原回收铁工艺研究[J]. 金属矿山, 2014(3): 156-160. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201403035.htm
|
[19] |
王建雄, 张淑敏, 李艳军, 等. 鞍山某铁矿石磁选-反浮选试验研究[J]. 矿产保护与利用, 2021, 41(3): 150-154. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH202103023.htm
|
[20] |
韩珍堂. 中国钢铁工业竞争力提升战略研究[D]. 北京: 中国社会科学院研究生院, 2014.
|
[21] |
侯永丰. 浅谈中国进口铁矿石定价机制及变化趋势[J]. 现代营销(经营版), 2021(7): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-XIXJ202107007.htm
|
[22] |
SHEN L, QIAO Y, GUO Y, et al. Preparation and formation mechanism of nano-iron oxide black pigment from blast furnace flue dust[J]. Ceramics International, 2013, 39(1): 737-744. doi: 10.1016/j.ceramint.2012.06.086
|
[23] |
LI D X, GAO G L, MENG F L, et al. Preparation of nano-iron oxide red pigment powders by use of cyanided tailings[J]. Journal of Hazardous Materials, 2008, 155(1/2): 369-377.
|
[24] |
LEGODI M A, DE WAAL D. The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste[J]. Dyes and Pigments, 2007, 74(1): 161-168. doi: 10.1016/j.dyepig.2006.01.038
|
[25] |
MADHESWARAN C K, AMBILY P S, DATTATREYA J K, et al. Studies on use of copper slag as replacement material for river sand in building constructions[J]. Journal of the Institution of Engineers (India): Series A, 2014, 95(3): 169-177. doi: 10.1007/s40030-014-0084-9
|
[26] |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 有色金属选矿回收铁精矿: GB/T 25953-2010[S]. 北京: 中国标准出版社, 2011.
|
[27] |
古国榜, 李朴. 无机化学[M]. 2版. 北京: 化学工业出版社, 2007.
|
[28] |
WANG Q M, LI Z C, LI D, et al. A method of high-quality silica preparation from copper smelting slag[J]. JOM, 2020, 72(7): 2676-2685. doi: 10.1007/s11837-020-04196-3
|
[1] | WEN Tanggen, ZHANG Bin, ZHANG Jiawei, LI Mingzhou, YANG Shaohua. Numerical simulation of multiphase flow in 6 kA neodymium electrolytic cell[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 706-715. DOI: 10.13264/j.cnki.ysjskx.2023.05.014 |
[2] | PANG Qishou, XIN Zhilin, LIN Xiaocheng, GONG Yaoteng, WANG Zhiyang. Numerical simulation of the electrochemical 3D time-varying flow field in a rare earth electrolytic cell[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 152-158. DOI: 10.13264/j.cnki.ysjskx.2022.03.019 |
[3] | ZHANG Hong-liang, LIANG Jin-ding, XU Yu-jie, LI Jie. Simulation of strong coupling electromagnetic current in aluminum reduction cells and its application in new cathodes[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 26-33. DOI: 10.13264/j.cnki.ysjskx.2017.05.004 |
[4] | LI Mingzhou, HUANG Jindi, TONG Changren, ZHANG Wenhai, LI Junbiao, WANG Jinliang. Numerical analysis of thermal-electrical fields in copper electrolytic cell[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 50-55. DOI: 10.13264/j.cnki.ysjskx.2016.06.009 |
[5] | WANG Jinliang, YANG Yiqing. Analysis of the electric field in rare earth molten salt electrolytic cell based on Comsol[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 30-34. DOI: 10.13264/j.cnki.ysjskx.2016.06.006 |
[6] | CHEN Yan-xin, PENG Shao-hua, ZHOU Ai-guo. The application of small box-fastener in rare earth electrolysis[J]. Nonferrous Metals Science and Engineering, 2012, 3(1): 49-52. DOI: 10.13264/j.cnki.ysjskx.2012.01.020 |
[7] | XING Li, HE Jian-zhong, GAO De-jin, HANG Chang-qing, FENG Feng-ming, XING Hua. Development and Application of Pre-baked Anode Electrolytic Cell Clamping Conductive Fixture[J]. Nonferrous Metals Science and Engineering, 2010, 24(3-4): 164-169. |
[8] | DENG Zuo-min, LIN Ping, WANG Jun. The Study about the Relation between Rare-earth-melted-production's Various Factors and Output-rate[J]. Nonferrous Metals Science and Engineering, 2007, 21(3): 33-34,47. |
[9] | WANG Jun, DENG Zuo-min, ZHANG Xiao-lian. The Test Research on Energy Balance of10kA Fluoride System in RE Fused-salt Electrolysis Cell[J]. Nonferrous Metals Science and Engineering, 2004, 18(2): 30-32, 37. |
[10] | DENG Zou-min, ZHANG Xiao-lian, WAN Jun. Numerical Analysis of Temperature Field in RE Electrolysis Cell[J]. Nonferrous Metals Science and Engineering, 2004, 18(1): 26-27,34. |