Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
PANG Qishou, XIN Zhilin, LIN Xiaocheng, GONG Yaoteng, WANG Zhiyang. Numerical simulation of the electrochemical 3D time-varying flow field in a rare earth electrolytic cell[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 152-158. DOI: 10.13264/j.cnki.ysjskx.2022.03.019
Citation: PANG Qishou, XIN Zhilin, LIN Xiaocheng, GONG Yaoteng, WANG Zhiyang. Numerical simulation of the electrochemical 3D time-varying flow field in a rare earth electrolytic cell[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 152-158. DOI: 10.13264/j.cnki.ysjskx.2022.03.019

Numerical simulation of the electrochemical 3D time-varying flow field in a rare earth electrolytic cell

More Information
  • Received Date: July 08, 2021
  • Revised Date: November 01, 2021
  • Available Online: July 15, 2022
  • The current analysis of the flow field of an electrolytic tank is based on the assumption of a quantitative single flow of gas or metal solvent. To show the flow field changes of the electrolytic tank in the electrolysis process, numerical simulation of the electrochemical 3D time-varying current field for the rare earth analysis tank was studied by ANSYS Fluent software. 3D simulation analysis of electrochemical transients was conducted in a tank for 12 min with the time of adding neodymium praseodymium oxide as the initial time. The simulation result was consistent with the actual production. It is concluded that the main flow mode of the flow field is the upward flow of gas generated in the inner area of the anode, and the flow rate is always at the maximum. The metal solution generated in the cathode area flows downward, whose flow velocity takes second place. The area between the anode and the cathode forms a longitudinal vortex, and the flow velocity is less than the first two. The lateral area of the anode is a flow dead zone with a minimum flow velocity. The crucible collection area tends to be stable overall, and the flow velocity is far smaller than the inner anode and the cathode area. The praseodymium neodymium oxide is consumed up after electrolysis for 10 minutes, and the flow field velocity gradually decreases.
  • [1]
    石富. 稀土电解槽的研究现状及发展趋势[J]. 中国稀土学报, 2007, 25(1): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB2007S1018.htm
    [2]
    王海辉. 10kA稀土电解槽的设计[D]. 赣州: 江西理工大学, 2018.
    [3]
    张雪娇. 稀土电解槽内杂质运动轨迹的数值模拟[D]. 包头: 内蒙古科技大学, 2015.
    [4]
    董云芳, 冯猛, 刘中兴, 等. 稀土电解槽电场对阳极气体气含率分布影响的数值模拟[J]. 稀有金属与硬质合金, 2018, 46(1): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XYJY201801004.htm
    [5]
    黄晶明, 张晓虎, 田亚斌, 等. Nd(Ⅲ)在NaF-KF熔盐钨电极上电化学行为[J]. 有色金属科学与工程, 2020, 11(5): 127-133. doi: 10.13264/j.cnki.ysjskx.2020.05.018
    [6]
    吴文远, 边雪. 稀土冶金技术[M]. 北京: 科学出版社, 2012.
    [7]
    刘康毅, 高鹏. 6kA镨钕电解槽不同阴极直径下的电热场耦合模拟[J]. 有色金属工程, 2020, 10(2): 60-65. doi: 10.3969/j.issn.2095-1744.2020.02.010
    [8]
    钟道国. 镨钕金属及氧化物中稀土配分的测定[S]. 赣州: 赣州有色冶金研究所, 2008-12-25.
    [9]
    刘航, 张耀, 乔晓辉, 等. 熔盐电解法制备低氧低钛稀土金属研究[J]. 稀有金属与硬质合金, 2021, 49(2): 5-8, 19. https://www.cnki.com.cn/Article/CJFDTOTAL-XYJY202102002.htm
    [10]
    毛建辉, 彭光怀. 电解质组成对10kA熔盐电解金属钕的影响[J]. 江西有色金属, 2007, 21(3): 20-22. doi: 10.3969/j.issn.1674-9669.2007.03.008
    [11]
    陈德宏, 颜世宏, 李宗安, 等. NdF3-LiF-Nd2O3熔盐体系中下阴极电解金属钕研究[J]. 中国稀土学报, 2009, 27(2): 302-305. doi: 10.3321/j.issn:1000-4343.2009.02.026
    [12]
    张亚楠, 李静, 柴登鹏, 等. PrF3-NdF3-LiF-Pr6O11-Nd2O3体系熔盐电导率性能研究[J]. 稀土, 2020, 41(1): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ202001017.htm
    [13]
    叶楠. 稀土电解槽阳极结构优化及其腐蚀消耗规律研究[D]. 赣州: 江西理工大学, 2020.
    [14]
    杨少华, 谢宝如, 杨凤丽, 等. 铝电解槽阳极气泡行为研究[J]. 有色金属科学与工程, 2013, 4(3): 20-24. doi: 10.13264/j.cnki.ysjskx.2013.03.014
    [15]
    王海辉, 逄启寿, 郜飘飘. 大电流稀土电解槽三维电场的数值仿真[J]. 中国稀土学报, 2017, 35(4): 514-519. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201704011.htm
    [16]
    HARRY STERN G T. HOLMES. Mechanism of anode thermal reaction in aluminum reduction cells[J]. Journal of the Electrochemical Society, 2019, 105: 478-483.
    [17]
    ZHANG X L, LIU H X, ZHENG X, et al. Influence of temperature distribution on products quality in 3 kA rare earth electrolytic cell[J]. Advanced Materials Research, 2013, 800: 496-500. doi: 10.4028/www.scientific.net/AMR.800.496
    [18]
    刘庆生, 汤卫东, 王建鲁. 稀土电解槽内阳极气泡行为的数值模拟[J]. 中国稀土学报, 2015, 33(6): 737-746. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201506015.htm
    [19]
    孙哲韬, 何英杰, 陈邵杰, 等. 全固态锂金属电池多物理场耦合下的电化学过程仿真模拟[J]. 高等学校化学学报, 2021, 42(5): 1598-1609. https://www.cnki.com.cn/Article/CJFDTOTAL-GDXH202105021.htm
    [20]
    伍永福, 鞠阳, 刘中兴, 等. 稀土电解槽流场-电场耦合数值模拟[J]. 稀土, 2015, 36(5): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201505014.htm
    [21]
    郜飘飘. 大电流稀土电解槽三维全槽仿真模拟与设计研究[D]. 赣州: 江西理工大学, 2017.
    [22]
    邓左民, 张小联, 王俊. 稀土电解槽温度场的数值分析[J]. 江西有色金属, 2004, 18(1): 26-27, 34. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS200401007.htm
    [23]
    卢小能, 张小增, 谢欣荣, 等. 25kA熔盐电解法制备稀土镨钕合金非稀土杂质有效控制的研究[J]. 有色金属科学与工程, 2015, 6(4): 10-15. doi: 10.13264/j.cnki.ysjskx.2015.04.003
    [24]
    刘宇新, 刘中兴, 杨立军. 稀土电解槽气液两相流动数值模拟[J]. 有色金属(冶炼部分), 2011(10): 27-30, 33. https://www.cnki.com.cn/Article/CJFDTOTAL-METE201110009.htm
  • Cited by

    Periodical cited type(3)

    1. 房孟钊. 回收污酸中铼的技术研究及应用现状. 硫磷设计与粉体工程. 2023(04): 24-28+6 .
    2. 史华杰,吴财松,闫虎祥,蒋国民,高伟荣. 浅谈初期雨水和生产废水生物制剂脱铊. 皮革制作与环保科技. 2023(19): 120-122 .
    3. 宁瑞,房孟钊,李伟. 从污酸中制备铼酸铵全流程工艺优化研究. 中国钼业. 2022(03): 46-52 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (198) PDF downloads (20) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return