Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LIU Jiancong, XIONG Daoling, ZHANG Jianping, CAO Xuewen, ZONG Yi, WANG Luqi, OUYANG Shaobo. The leaching process of iron and manganese in tungsten smelting slag[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 14-20. DOI: 10.13264/j.cnki.ysjskx.2018.04.003
Citation: LIU Jiancong, XIONG Daoling, ZHANG Jianping, CAO Xuewen, ZONG Yi, WANG Luqi, OUYANG Shaobo. The leaching process of iron and manganese in tungsten smelting slag[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 14-20. DOI: 10.13264/j.cnki.ysjskx.2018.04.003

The leaching process of iron and manganese in tungsten smelting slag

More Information
  • Received Date: April 03, 2018
  • Published Date: August 30, 2018
  • The analysis results of raw materials by XRF, XRD and SEM show that: the main constituent elements of Fe, Mn, and Ca were determined to be approximately 23.41%, 7.166%, and 15.22%; the higher content of iron compound crystals and manganese compound crystals are mainly Fe2O3 and NaMn(Mn, Fe)2(PO4)3; in the tungsten smelting slag, crystalline substances are adsorbed on the surface of large particles. The morphology and size of the particles have great difference. Sulfuric acid was selected as the leaching agent for the tungsten smelting slag, and the iron and manganese were selectively leached. In the calcium-enriched filter residue, the leaching amounts of manganese and iron in the 10 g tungsten smelting slag were about 0.58 g and 2.1 g, respectively. The effects of reaction temperature, solid-liquid ratio, mass fraction of sulfuric acid and reaction time on the leaching rate of iron and manganese were investigated. The optimum conditions were obtained by orthogonal experiment table: reaction temperature 80 ℃, solid-liquid ratio 1:6 (g/g), mass fraction 25% (g/g) and reaction time 90 min. The number of leaching is 1 time. The leachate cycle leaching times can increase the concentration of iron and manganese by approximately 50% and 38%. The kinetics of the leaching process is more consistent with the control of the diffusion through the product layer, in which the iron leaching rate is faster.
  • [1]
    JI N, ZHANG T, ZHENG M, et al. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angewandte Chemie, 2008, 47(44): 8510-8513. doi: 10.1002/anie.v47:44
    [2]
    LIM S H N, ISIDORSSON J, SUN L, et al. Modeling of optical and energy performance of tungsten-oxide-based electrochromic windows including their intermediate states[J]. Solar Energy Materials & Solar Cells, 2013, 108(108): 129-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0229367936
    [3]
    WANG Y, SONG S, MARAGOU V, et al. High surface area tungsten carbide microspheres as effective Pt catalyst support for oxygen reduction reaction[J]. Applied Catalysis B Environmental, 2009, 89(1/2): 223-228. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0215602290
    [4]
    金属百科. 钨资源分布和产量. http://baike.asianmetal.cn/metal/w/resources&production.shtml, 2016. 10. 23/2018. 4. 3
    [5]
    佚名.再工业化-工业化4.0时代的新思路[J].智慧工厂, 2016(9): 39-40. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=KBCK201609016&dbname=CJFD&dbcode=CJFQ
    [6]
    贠天一.工业4.0-工业化的第四阶段[J].中国战略新兴产业, 2015(2): 44-46. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZLXC201502021&dbname=CJFD&dbcode=CJFQ
    [7]
    闫升. 钨矿浸出渣制备电子级硫酸锰[D]. 长沙: 中南大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10533-1014406282.htm
    [8]
    陈沛云, 冯秀娟.钨尾矿农田重金属空间分布特征研究[J].安徽农业科学, 2011, 39(23): 14039-14040. doi: 10.3969/j.issn.0517-6611.2011.23.057
    [9]
    赵武, 霍成立, 刘明珠, 等.有色金属尾矿综合利用的研究进展[J].中国资源综合利用, 2011, 29(3): 24-28. doi: 10.3969/j.issn.1008-9500.2011.03.004
    [10]
    焦向科, 罗仙平, 李佳, 等.钨尾矿预处理制备矿物聚合材料[J].硅酸盐通报, 2015, 34(12): 3610-3616. http://d.old.wanfangdata.com.cn/Periodical/gsytb201512038
    [11]
    卢安贤, 吴婷, 刘涛涌, 等. 一种以钨尾矿为主要原料的高强度陶瓷及其制备方法: CN104496433A[P]. 2015-10-01.
    [12]
    朱刚雄, 王海.钨尾矿在水泥胶砂中的应用[J].矿产保护与利用, 2017(5):82-86. http://d.old.wanfangdata.com.cn/Periodical/kcbhyly201705017
    [13]
    司加保, 李琳, 黄震.用钨尾矿制备水泥混合材实验[J].现代矿业, 2016(7): 222-225. doi: 10.3969/j.issn.1674-6082.2016.07.077
    [14]
    何桂春, 肖策环.江西某钨尾矿浮选实验[J].有色金属科学与工程, 2015, 6(6): 82-87. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20150615
    [15]
    戴艳阳, 钟晖, 钟海云.钨渣回收制备四氧化三锰新工艺[J].中国有色金属学报, 2012, 22(4): 1242-1247. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201204037
    [16]
    杨秀丽, 王晓辉, 向仕彪, 等.盐酸法富集钨渣中的钽和铌[J].中国有色金属学报, 2013(3): 873-881. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201303039
    [17]
    卢友中.选冶联合工艺从钨尾矿及细泥中回收钨的实验研究[J].江西理工大学学报, 2009, 30(3): 70-73. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=NFYX200903021&dbname=CJFD&dbcode=CJFQ
    [18]
    房朝军, 冯其明, 欧乐明, 等.某钨尾矿综合回收低品位萤石浮选实验研究[J].有色金属科学与工程, 2014(2): 72-76. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201402013
    [19]
    艾光华, 李继福, 邬海滨, 等.从某黑白钨尾矿中回收萤石的实验研究[J].非金属矿, 2016, 39(3): 33-35. doi: 10.3969/j.issn.1000-8098.2016.03.011
    [20]
    吴师金, 陈军, 黄六老.江西大余某钨锡尾矿云母、长石和石英分离研究[J].现代矿业, 2017(11): 135-137. doi: 10.3969/j.issn.1674-6082.2017.11.037
    [21]
    王丰, 刘成士, 曹利娜, 等.三元正极材料LixNiyCo2Mn2-x-y-zO2的研究现状[J].电池, 2016, 46(2):109-112. doi: 10.3969/j.issn.1001-1579.2016.02.014
    [22]
    YABUUCHI N, OHZUKU T. Novel lithium insertion material of LiCo3Ni3Mn3O2, for advanced lithium-ion batteries[J]. Journal of Power Sources, 2003, 119/120/121(6): 171-174. http://www.sciencedirect.com/science/article/pii/S0378775303001733
    [23]
    MURALIGANTH T, STROUKOFF K R, MANTHIRAM A. Microwave-solvothermal synthesis of nanostructured Li2MSO4/C(M: Mn and Fe) cathodes for lithium-ion batteries[J]. Cheminform, 2010, 22(20):5754-5761.
    [24]
    JIN E M, JIN B, JEON Y S, et al. Electrochemical properties of LiMn2O4 for lithium polymer battery[J]. Journal of Power Sources, 2009, 189(1): 620-623. doi: 10.1016/j.jpowsour.2008.09.102
    [25]
    DING Y L, XIE J, CAO G S, et al. Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries[J]. Advanced Functional Materials, 2011, 21(2): 348-355. doi: 10.1002/adfm.201001448
    [26]
    郭钟群, 金解放, 王观石, 等.风化壳淋积稀土矿浸取动力学基础理论研究[J].有色金属科学与工程, 2017, 8(5):127-132. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017050019
  • Related Articles

    [1]YAO Mingcan, LI Tianyu, HU Jin, FU Fangzhong, LIN Jiahao, FAN Helin, WANG Ruixiang, XU Zhifeng. Structure and transport properties of FeO-SiO2 melt[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 17-24. DOI: 10.13264/j.cnki.ysjskx.2025.01.003
    [2]ZHU Ningyuan, CHEN Qiuming, CHEN Shihao, ZUO Shoubin. Study on high-temperature constitutive model of TC11 titanium alloy dynamic recovery and dynamic recrystallization[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 58-66. DOI: 10.13264/j.cnki.ysjskx.2024.01.008
    [3]SUN Kailei, WANG Xu, CAI Boqing, LIAO Chunfa, SHI Zhongning. Molecular dynamics simulation evaluation on viscosity of typical alkali metal fluorine salts[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 24-29. DOI: 10.13264/j.cnki.ysjskx.2023.01.004
    [4]TAN Ming, SHEN Zhengchang, ZHANG Fuya. Dynamics performance of a new type of flotation machine rotor and its effect on coarse particles flotation performance[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 93-100. DOI: 10.13264/j.cnki.ysjskx.2022.01.012
    [5]TONG Zhifang, LiN Xin, ZENG Qingpo. Dissipative particle dynamics of the sadsorption propertiesof compound additives on the surface of dicalcium silicate[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 1-8. DOI: 10.13264/j.cnki.ysjskx.2020.04.001
    [6]TONG Zhifang, HU Bin, XIAO Cheng, WEI Zhanlong. Molecular dynamics simulation of adsorption of polyacrylic acid on surface of dicalcium silicate[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 25-29. DOI: 10.13264/j.cnki.ysjskx.2016.06.005
    [7]TONG Zhifang, XIAO Cheng, WEI Zhanlong. Molecular dynamics simulation and its application to metallurgical slag[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 15-20. DOI: 10.13264/j.cnki.ysjskx.2016.03.003
    [8]Guichun He YaHe, Hua Yanan, Jiang Wei, zhang Bing. Molecular dynamics simulation and its application in mineral processing[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 91-96. DOI: 10.13264/j.cnki.ysjskx.2015.05.017
    [9]DING Zhi-jie, WEI Yong-li, CUI Kai. Metal properties and kinetic characteristics of Mg-Zn alloy in rapid cooling process[J]. Nonferrous Metals Science and Engineering, 2013, 4(2): 30-33.
    [10]GON Yao-teng, ZHOU Jian-jun, SUN Ai-ping, WANG Wei-fen. The Research on the Dynamic Simulation for the Hydraulic System of the Cone Crusher[J]. Nonferrous Metals Science and Engineering, 2005, 19(3): 43-46.
  • Cited by

    Periodical cited type(6)

    1. 赖瑞森,邱仙辉,赵冠飞,杨雯慧,邱廷省. 苯甲羟肟酸-椰油胺组合捕收剂对钨矿浮选行为及机理研究. 有色金属科学与工程. 2024(01): 115-122 . 本站查看
    2. 赵俊杰,蔡林宏,舒建成,曹静,杨勇,陈梦君. 利用双氧水为还原剂湿法浸出电解锰阳极泥中锰的研究. 工程科学学报. 2023(02): 206-213 .
    3. 张金凤,崔雅茹,何喜红,李林波,张飞宇,吕超飞,周宇飞. 阳极泥中铜的常压氧化预脱除及动力学分析. 有色金属科学与工程. 2023(05): 615-623 . 本站查看
    4. 何德文,李俊杰,周康根,陈伟,龚丹丹. 白钨矿焙烧转料的氢氧化钠浸出动力学研究. 稀有金属. 2022(07): 926-934 .
    5. 彭伟,黄健,王振杰,刘安荣. 钨冶炼渣中有价金属回收利用研究现状. 化工进展. 2022(12): 6656-6663 .
    6. 张金祥,罗教生,管建红,洪侃,黄叶钿,普建,李忠岐,陈远林,郭学益. 我国钨渣处理现状与研究进展. 中国钨业. 2021(06): 62-70 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (114) PDF downloads (7) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return