Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
BAO Xuefan, DENG Zhigan, WEI Chang, FAN Gang, LI Xingbin, LI Minting. Research status and development of lithium carbonate thermal decomposition[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 467-472. DOI: 10.13264/j.cnki.ysjskx.2023.04.004
Citation: BAO Xuefan, DENG Zhigan, WEI Chang, FAN Gang, LI Xingbin, LI Minting. Research status and development of lithium carbonate thermal decomposition[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 467-472. DOI: 10.13264/j.cnki.ysjskx.2023.04.004

Research status and development of lithium carbonate thermal decomposition

More Information
  • Received Date: July 28, 2022
  • Revised Date: November 30, 2022
  • Available Online: August 23, 2023
  • Li2O is widely used in the chemical industry, atomic energy industry, metallurgy and other fields. Li2CO3 is the most common raw material for preparing Li2O. The study on the thermal decomposition of Li2CO3 plays an important role in preparing Li2O. This paper explored the thermal decomposition of Li2CO3under vacuum, the addition of alumina to promote the thermal decomposition of Li2CO3 at normal pressure and vacuum conditons, respectively. From the methods above, the detailed thermodynamic analysis provided relevant data for the thermal decomposition behavior of Li2CO3. Moreover, this paper introduced the current research status and development of the thermal decomposition of Li2CO3 worldwide. The advantages of vacuum preparation of Li2O were noted for future research, which provides a reference for selecting Li2O preparation processes.
  • [1]
    李良彬, 邓招男, 熊训满, 等. 一种高纯氧化锂的制备方法: CN102515211A[P]. 2012-06-27.
    [2]
    姜小毛, 李芳芳. 我掌握高纯氧化锂制备新工艺——百吨级生产线建成投产[N]. 中国化工报, 2014-02-14(2).
    [3]
    张朝纲, 李继东, 路金林, 等. 以氧化铝为骨料真空热分解碳酸锂的正交实验及动力学过程分析[J]. 材料与冶金学报, 2020, 19(3): 196-202. https://www.cnki.com.cn/Article/CJFDTOTAL-HUJI202003008.htm
    [4]
    张江峰, 崔妍. 锂在新兴领域的应用[J]. 中国有色金属, 2021(7): 44-45. doi: 10.3969/j.issn.1673-3894.2021.07.009
    [5]
    胡国琛, 胡年香, 伍继君, 等. 锂离子电池正极材料中有价金属回收研究进展[J]. 中国有色金属学报, 2021, 31(11): 3320-3343. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202111021.htm
    [6]
    雷舒雅, 徐睿, 孙伟, 等. 废旧锂离子电池回收利用[J]. 中国有色金属学报, 2021, 31(11): 3303-3319. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202111020.htm
    [7]
    陈世贤, 苏昊, 戴曦. 失效锂离子电池正极材料管道化浸出工艺[J]. 有色金属科学与工程, 2022, 13(3): 89-98. doi: 10.13264/j.cnki.ysjskx.2022.03.012
    [8]
    乐志强, 薄胜民, 王光建. 无机精细化学品手册[M]. 北京: 化学工业出版社, 200l.
    [9]
    杨风春. 氧化锂的研制[J]. 新疆有色金属, 1999, 22(3): 27-29, 32. https://www.cnki.com.cn/Article/CJFDTOTAL-XJYS199903008.htm
    [10]
    ANNO J N, BOEING H H. Method of producing porous lithium oxide: US4221775[P]. 1980-09-09.
    [11]
    SALMON D J. High purity lithium oxide process: US4732751[P]. 1988-03-22.
    [12]
    姚文贵, 马鸿文, 刘梅堂, 等. 锂辉石水热钾碱分解制取碳酸锂相平衡模拟与优化试验[J]. 有色金属(冶炼部分), 2021(4): 28-35. https://www.cnki.com.cn/Article/CJFDTOTAL-METE202104005.htm
    [13]
    李存增, 常华. 盐湖卤水提锂溶液制备碳酸锂试验[J]. 有色金属(冶炼部分), 2021(11): 75-78. https://www.cnki.com.cn/Article/CJFDTOTAL-METE202111013.htm
    [14]
    汪发波, 王林生, 文小强. 碳化分解法提纯碳酸锂的研究[J]. 有色金属科学与工程, 2013, 4(2): 41-45. doi: 10.13264/j.cnki.ysjskx.2013.02.006
    [15]
    戴江洪, 王宏岩, 李平. 高纯碳酸锂制备研究进展[J]. 中国有色冶金, 2020, 49(1): 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YSYL202001014.htm
    [16]
    肖国光. 熔盐法制备氧化镁的反应机理及其动力学研究[D]. 南昌: 南昌大学, 2010.
    [17]
    夏伟, 黄芳, 王梅, 等. 纳米级碳酸钙煅烧分解特性研究[J]. 江汉大学学报(自然科学版), 2019, 47(1): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-WHZG201901002.htm
    [18]
    卢尚青, 吴素芳. 碳酸钙热分解进展[J]. 化工学报, 2015, 66(8): 2895-2902. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201508019.htm
    [19]
    施磊. 铝酸锂真空碳热还原制备金属锂的工艺研究[D]. 昆明: 昆明理工大学, 2020.
    [20]
    梁英教, 车荫昌. 无机物热力学数据手册[M]. 沈阳: 东北大学出版社, 1993: 449-479.
    [21]
    狄跃忠, 彭建平, 王耀武, 等. 真空铝热还原LiAlO2制取金属锂的研究[J]. 真空科学与技术学报, 2012, 32(7): 588-592. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201207010.htm
    [22]
    ČANČAREVIČ, SCHÖN J C, JANSEN M. Alkali metal carbonates at high pressure[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2006, 632(8/9): 1437-1448.
    [23]
    ČANČAREVIĆ Ž, SCHÖN J, JANSEN M. Possible existence of alkali metal orthocarbonates at high pressure[J]. Chemistry-A European Journal, 2007, 13(26): 7330-7348.
    [24]
    KAPLAN V, WACHTEL E, LUBOMIRSKY I. Conditions of stability for (Li2CO3+Li2O) melts in air[J]. The Journal of Chemical Thermodynamics, 2011, 43(11): 1623-1627.
    [25]
    KAPLAN V, WACHTEL E, LUBOMIRSKY I. CO2 to CO electrochemical conversion in molten Li2CO3 is stable with respect to sulfur contamination[J]. Journal of the Electrochemical Society, 2013, 161(1): 54-57.
    [26]
    KAPLAN V, WACHTEL E, LUBOMIRSKY I. Titanium carbide coating of titanium by cathodic deposition from a carbonate melt[J]. Journal of the Electrochemical Society, 2012, 159(11): 159-161.
    [27]
    DUAN Y H, SORESCU D C. Density functional theory studies of the structural, electronic, and phonon properties of Li2O and Li2CO3: Application to CO2 capture reaction[J]. Physical Review, B. Condensed Matter and Materials Physics, 2009, 79(1): 014301.
    [28]
    KAPLAN V, WACHTEL E, GARTSMAN K, et al. Conversion of CO2 to CO by electrolysis of molten lithium carbonate[J]. Journal of the Electrochemical Society, 2010, 157(4): 552-556.
    [29]
    MOSQUEDA H A, VAZQUEZ C, BOSCH P, et al. Chemical sorption of carbon dioxide (CO2) on lithium oxide (Li2O)[J]. Chemistry of Materials, 2006, 18(9): 2307-2310.
    [30]
    ÁVALOS-RENDÓN T L, PFEIFFER H. High CO2 chemisorption in α-Li5AlO4 at low temperatures (30-80℃): effect of the water vapor addition[J]. Energy & Fuels, 2012, 26(5): 3110-3114.
    [31]
    KONAR B, VAN ENDE M A, JUNG I H. Critical evaluation and thermodynamic optimization of the Li2O-Al2O3 and Li2O-MgO-Al2O3 systems[J]. Metallurgical and Materials Transactions B, 2018, 49(5): 2917-2944.
    [32]
    尤晶, 王耀武, 贺晓军. 碳酸锂煅烧制备氧化锂的工艺研究[J]. 轻金属, 2020(11): 4-6, 15. https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS202011002.htm
    [33]
    尤晶, 王耀武, 贺晓军. 镁锂混合氧化物的制备工艺研究[J]. 稀有金属与硬质合金, 2021, 49(1): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-XYJY202101014.htm
  • Related Articles

    [1]SHENG Yuhang, FAN Chunchao, WANG Zengjia, LI Guangbo, YANG Jiguang. Compressive strength and microstructure analysis of cemented tailings backfill with different cementing materials[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 570-576. DOI: 10.13264/j.cnki.ysjskx.2024.04.012
    [2]KE Yuxian, ZENG Jie, HU Kaijian, SHEN Yang, YU Songtao, MA Yongchao. Triaxial mechanical properties and evolution mechanism of fully cemented unclassified tailings backfill under seepage pressure[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 422-431. DOI: 10.13264/j.cnki.ysjskx.2024.03.012
    [3]CHENG Jinshan, GUAN Huadong, WANG Guanshi, WANG Yongchao, LIN Qiang. Experimental study on the acoustic parameters of red sandstone affected by water saturation[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 105-114. DOI: 10.13264/j.cnki.ysjskx.2024.01.013
    [4]HUA Huaitian, WANG Qingya. Effects of different factors on the fluidity, strength and microstructure of superfine tailings cemented paste backfill[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 676-683. DOI: 10.13264/j.cnki.ysjskx.2023.05.010
    [5]JIN Jiefang, LIAO Zhanxiang, YANG Yi, XU Hong, ZHAO Kui. Effect of dynamic loading on the propagation velocity of stress waves in red sandstone under axial static stress[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 107-117. DOI: 10.13264/j.cnki.ysjskx.2023.01.013
    [6]ZHUO Yu-long, CHEN Chen, CAO Shi-rong, WANG Xiao-jun, DENG Shu-qiang, FENG Xiao. Study on the strength characteristics of different block stone filling material[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 72-75. DOI: 10.13264/j.cnki.ysjikx.2016.05.013
    [7]LIU Xianjun, HE Wen, XIE Yong, LIU Hao, XIE Tao. Strength of cemented classifying tailings backfilled by new cementing agent[J]. Nonferrous Metals Science and Engineering, 2015, (2): 72-79. DOI: 10.13264/j.cnki.ysjskx.2015.02.014
    [8]HE Zhe-xiang, XIAO Qi-chun, LI Xiang, XIAO Wei. Influence of lead-zinc tailings on cement properties and mineral composition[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 57-61. DOI: 10.13264/j.cnki.ysjskx.2014.02.010
    [9]ZENG Peng, ZHAO Kui, DENG Xiao-ping, SHAO Hai, WANG Ming, WU Yue-sheng, GAO Zhong. Grey correlation analysis between rock's chemical elements and compressive strength[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 79-82, 100. DOI: 10.13264/j.cnki.ysjskx.2013.01.001
    [10]DU Yan-lin, HE Wei-min, SHI Lin-ke. Gray Correlative Analysis of Factors Impacting on Shear Wave Velocity of Soil in Eastern Zhengzhou[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 12-14.
  • Cited by

    Periodical cited type(8)

    1. 邓越,王婷婷,孙清鹏,孙金峰,张少飞. 三维阵列CoO_x/CeO_2双功能催化剂的制备及其电解水性能研究. 铜业工程. 2025(01): 95-103 .
    2. 薛天雨,黄仲,谷昊辉,张海军. 高熵合金纳米电催化剂的合成. 稀有金属. 2024(01): 90-104 .
    3. 裴启飞,郭孟伟,邵伟春,王恩泽,高明远,张启波. 锌电积体系Zn-MnO_2同槽电解电化学分析. 有色金属科学与工程. 2024(03): 322-331 . 本站查看
    4. 于巧玲,刘成宝,曹一达,郑磊之,陈丰,钱君超,邱永斌,孟宪荣,陈志刚. SnO_2QDs-g-C_3N_4/C的合成及其光催化降解四环素研究. 稀有金属. 2024(08): 1144-1153 .
    5. 朱得智,徐京城. FeS@NiMoO_4异质结构筑及电催化析氢性能研究. 有色金属材料与工程. 2024(06): 60-67+74 .
    6. 侯振宇,苑慧萍,刘彧儒,沈浩,李志念,蒋利军. 化学计量比对钇-镍基储氢合金结构和储氢性能的影响. 稀有金属. 2024(12): 1671-1680 .
    7. 余德和,左川,高勇,周世平,卢军,刘锋. 电解水析氢贵金属电催化剂的研究进展. 稀有金属. 2023(11): 1573-1586 .
    8. 王诗雯,鲁杨帆,丁朝,李建波,陈玉安,谭军. Ti基催化剂改性Mg基储氢材料的研究进展. 稀有金属. 2023(12): 1642-1656 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (492) PDF downloads (71) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return