Citation: | BAO Xuefan, DENG Zhigan, WEI Chang, FAN Gang, LI Xingbin, LI Minting. Research status and development of lithium carbonate thermal decomposition[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 467-472. DOI: 10.13264/j.cnki.ysjskx.2023.04.004 |
[1] |
李良彬, 邓招男, 熊训满, 等. 一种高纯氧化锂的制备方法: CN102515211A[P]. 2012-06-27.
|
[2] |
姜小毛, 李芳芳. 我掌握高纯氧化锂制备新工艺——百吨级生产线建成投产[N]. 中国化工报, 2014-02-14(2).
|
[3] |
张朝纲, 李继东, 路金林, 等. 以氧化铝为骨料真空热分解碳酸锂的正交实验及动力学过程分析[J]. 材料与冶金学报, 2020, 19(3): 196-202. https://www.cnki.com.cn/Article/CJFDTOTAL-HUJI202003008.htm
|
[4] |
张江峰, 崔妍. 锂在新兴领域的应用[J]. 中国有色金属, 2021(7): 44-45. doi: 10.3969/j.issn.1673-3894.2021.07.009
|
[5] |
胡国琛, 胡年香, 伍继君, 等. 锂离子电池正极材料中有价金属回收研究进展[J]. 中国有色金属学报, 2021, 31(11): 3320-3343. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202111021.htm
|
[6] |
雷舒雅, 徐睿, 孙伟, 等. 废旧锂离子电池回收利用[J]. 中国有色金属学报, 2021, 31(11): 3303-3319. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202111020.htm
|
[7] |
陈世贤, 苏昊, 戴曦. 失效锂离子电池正极材料管道化浸出工艺[J]. 有色金属科学与工程, 2022, 13(3): 89-98. doi: 10.13264/j.cnki.ysjskx.2022.03.012
|
[8] |
乐志强, 薄胜民, 王光建. 无机精细化学品手册[M]. 北京: 化学工业出版社, 200l.
|
[9] |
杨风春. 氧化锂的研制[J]. 新疆有色金属, 1999, 22(3): 27-29, 32. https://www.cnki.com.cn/Article/CJFDTOTAL-XJYS199903008.htm
|
[10] |
ANNO J N, BOEING H H. Method of producing porous lithium oxide: US4221775[P]. 1980-09-09.
|
[11] |
SALMON D J. High purity lithium oxide process: US4732751[P]. 1988-03-22.
|
[12] |
姚文贵, 马鸿文, 刘梅堂, 等. 锂辉石水热钾碱分解制取碳酸锂相平衡模拟与优化试验[J]. 有色金属(冶炼部分), 2021(4): 28-35. https://www.cnki.com.cn/Article/CJFDTOTAL-METE202104005.htm
|
[13] |
李存增, 常华. 盐湖卤水提锂溶液制备碳酸锂试验[J]. 有色金属(冶炼部分), 2021(11): 75-78. https://www.cnki.com.cn/Article/CJFDTOTAL-METE202111013.htm
|
[14] |
汪发波, 王林生, 文小强. 碳化分解法提纯碳酸锂的研究[J]. 有色金属科学与工程, 2013, 4(2): 41-45. doi: 10.13264/j.cnki.ysjskx.2013.02.006
|
[15] |
戴江洪, 王宏岩, 李平. 高纯碳酸锂制备研究进展[J]. 中国有色冶金, 2020, 49(1): 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YSYL202001014.htm
|
[16] |
肖国光. 熔盐法制备氧化镁的反应机理及其动力学研究[D]. 南昌: 南昌大学, 2010.
|
[17] |
夏伟, 黄芳, 王梅, 等. 纳米级碳酸钙煅烧分解特性研究[J]. 江汉大学学报(自然科学版), 2019, 47(1): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-WHZG201901002.htm
|
[18] |
卢尚青, 吴素芳. 碳酸钙热分解进展[J]. 化工学报, 2015, 66(8): 2895-2902. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201508019.htm
|
[19] |
施磊. 铝酸锂真空碳热还原制备金属锂的工艺研究[D]. 昆明: 昆明理工大学, 2020.
|
[20] |
梁英教, 车荫昌. 无机物热力学数据手册[M]. 沈阳: 东北大学出版社, 1993: 449-479.
|
[21] |
狄跃忠, 彭建平, 王耀武, 等. 真空铝热还原LiAlO2制取金属锂的研究[J]. 真空科学与技术学报, 2012, 32(7): 588-592. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201207010.htm
|
[22] |
ČANČAREVIČ, SCHÖN J C, JANSEN M. Alkali metal carbonates at high pressure[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2006, 632(8/9): 1437-1448.
|
[23] |
ČANČAREVIĆ Ž, SCHÖN J, JANSEN M. Possible existence of alkali metal orthocarbonates at high pressure[J]. Chemistry-A European Journal, 2007, 13(26): 7330-7348.
|
[24] |
KAPLAN V, WACHTEL E, LUBOMIRSKY I. Conditions of stability for (Li2CO3+Li2O) melts in air[J]. The Journal of Chemical Thermodynamics, 2011, 43(11): 1623-1627.
|
[25] |
KAPLAN V, WACHTEL E, LUBOMIRSKY I. CO2 to CO electrochemical conversion in molten Li2CO3 is stable with respect to sulfur contamination[J]. Journal of the Electrochemical Society, 2013, 161(1): 54-57.
|
[26] |
KAPLAN V, WACHTEL E, LUBOMIRSKY I. Titanium carbide coating of titanium by cathodic deposition from a carbonate melt[J]. Journal of the Electrochemical Society, 2012, 159(11): 159-161.
|
[27] |
DUAN Y H, SORESCU D C. Density functional theory studies of the structural, electronic, and phonon properties of Li2O and Li2CO3: Application to CO2 capture reaction[J]. Physical Review, B. Condensed Matter and Materials Physics, 2009, 79(1): 014301.
|
[28] |
KAPLAN V, WACHTEL E, GARTSMAN K, et al. Conversion of CO2 to CO by electrolysis of molten lithium carbonate[J]. Journal of the Electrochemical Society, 2010, 157(4): 552-556.
|
[29] |
MOSQUEDA H A, VAZQUEZ C, BOSCH P, et al. Chemical sorption of carbon dioxide (CO2) on lithium oxide (Li2O)[J]. Chemistry of Materials, 2006, 18(9): 2307-2310.
|
[30] |
ÁVALOS-RENDÓN T L, PFEIFFER H. High CO2 chemisorption in α-Li5AlO4 at low temperatures (30-80℃): effect of the water vapor addition[J]. Energy & Fuels, 2012, 26(5): 3110-3114.
|
[31] |
KONAR B, VAN ENDE M A, JUNG I H. Critical evaluation and thermodynamic optimization of the Li2O-Al2O3 and Li2O-MgO-Al2O3 systems[J]. Metallurgical and Materials Transactions B, 2018, 49(5): 2917-2944.
|
[32] |
尤晶, 王耀武, 贺晓军. 碳酸锂煅烧制备氧化锂的工艺研究[J]. 轻金属, 2020(11): 4-6, 15. https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS202011002.htm
|
[33] |
尤晶, 王耀武, 贺晓军. 镁锂混合氧化物的制备工艺研究[J]. 稀有金属与硬质合金, 2021, 49(1): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-XYJY202101014.htm
|
[1] | SHENG Yuhang, FAN Chunchao, WANG Zengjia, LI Guangbo, YANG Jiguang. Compressive strength and microstructure analysis of cemented tailings backfill with different cementing materials[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 570-576. DOI: 10.13264/j.cnki.ysjskx.2024.04.012 |
[2] | KE Yuxian, ZENG Jie, HU Kaijian, SHEN Yang, YU Songtao, MA Yongchao. Triaxial mechanical properties and evolution mechanism of fully cemented unclassified tailings backfill under seepage pressure[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 422-431. DOI: 10.13264/j.cnki.ysjskx.2024.03.012 |
[3] | CHENG Jinshan, GUAN Huadong, WANG Guanshi, WANG Yongchao, LIN Qiang. Experimental study on the acoustic parameters of red sandstone affected by water saturation[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 105-114. DOI: 10.13264/j.cnki.ysjskx.2024.01.013 |
[4] | HUA Huaitian, WANG Qingya. Effects of different factors on the fluidity, strength and microstructure of superfine tailings cemented paste backfill[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 676-683. DOI: 10.13264/j.cnki.ysjskx.2023.05.010 |
[5] | JIN Jiefang, LIAO Zhanxiang, YANG Yi, XU Hong, ZHAO Kui. Effect of dynamic loading on the propagation velocity of stress waves in red sandstone under axial static stress[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 107-117. DOI: 10.13264/j.cnki.ysjskx.2023.01.013 |
[6] | ZHUO Yu-long, CHEN Chen, CAO Shi-rong, WANG Xiao-jun, DENG Shu-qiang, FENG Xiao. Study on the strength characteristics of different block stone filling material[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 72-75. DOI: 10.13264/j.cnki.ysjikx.2016.05.013 |
[7] | LIU Xianjun, HE Wen, XIE Yong, LIU Hao, XIE Tao. Strength of cemented classifying tailings backfilled by new cementing agent[J]. Nonferrous Metals Science and Engineering, 2015, (2): 72-79. DOI: 10.13264/j.cnki.ysjskx.2015.02.014 |
[8] | HE Zhe-xiang, XIAO Qi-chun, LI Xiang, XIAO Wei. Influence of lead-zinc tailings on cement properties and mineral composition[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 57-61. DOI: 10.13264/j.cnki.ysjskx.2014.02.010 |
[9] | ZENG Peng, ZHAO Kui, DENG Xiao-ping, SHAO Hai, WANG Ming, WU Yue-sheng, GAO Zhong. Grey correlation analysis between rock's chemical elements and compressive strength[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 79-82, 100. DOI: 10.13264/j.cnki.ysjskx.2013.01.001 |
[10] | DU Yan-lin, HE Wei-min, SHI Lin-ke. Gray Correlative Analysis of Factors Impacting on Shear Wave Velocity of Soil in Eastern Zhengzhou[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 12-14. |
1. |
邓越,王婷婷,孙清鹏,孙金峰,张少飞. 三维阵列CoO_x/CeO_2双功能催化剂的制备及其电解水性能研究. 铜业工程. 2025(01): 95-103 .
![]() | |
2. |
薛天雨,黄仲,谷昊辉,张海军. 高熵合金纳米电催化剂的合成. 稀有金属. 2024(01): 90-104 .
![]() | |
3. |
裴启飞,郭孟伟,邵伟春,王恩泽,高明远,张启波. 锌电积体系Zn-MnO_2同槽电解电化学分析. 有色金属科学与工程. 2024(03): 322-331 .
![]() | |
4. |
于巧玲,刘成宝,曹一达,郑磊之,陈丰,钱君超,邱永斌,孟宪荣,陈志刚. SnO_2QDs-g-C_3N_4/C的合成及其光催化降解四环素研究. 稀有金属. 2024(08): 1144-1153 .
![]() | |
5. |
朱得智,徐京城. FeS@NiMoO_4异质结构筑及电催化析氢性能研究. 有色金属材料与工程. 2024(06): 60-67+74 .
![]() | |
6. |
侯振宇,苑慧萍,刘彧儒,沈浩,李志念,蒋利军. 化学计量比对钇-镍基储氢合金结构和储氢性能的影响. 稀有金属. 2024(12): 1671-1680 .
![]() | |
7. |
余德和,左川,高勇,周世平,卢军,刘锋. 电解水析氢贵金属电催化剂的研究进展. 稀有金属. 2023(11): 1573-1586 .
![]() | |
8. |
王诗雯,鲁杨帆,丁朝,李建波,陈玉安,谭军. Ti基催化剂改性Mg基储氢材料的研究进展. 稀有金属. 2023(12): 1642-1656 .
![]() |