Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LIN Jin, CHEN Yunnen, LU Liuxian, LIU Jun, WANG Junfeng, QIU Tingsheng. Environmental benefit evaluation of copper tailings resource utilization based on LCA[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 106-112, 121. DOI: 10.13264/j.cnki.ysjskx.2021.03.014
Citation: LIN Jin, CHEN Yunnen, LU Liuxian, LIU Jun, WANG Junfeng, QIU Tingsheng. Environmental benefit evaluation of copper tailings resource utilization based on LCA[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 106-112, 121. DOI: 10.13264/j.cnki.ysjskx.2021.03.014

Environmental benefit evaluation of copper tailings resource utilization based on LCA

More Information
  • Received Date: March 17, 2021
  • Published Date: June 29, 2021
  • Taking the copper tailings as the research object, the environmental impact of the conventional treatment of copper tailings and three resource utilization methods of copper tailings were compared by using life cycle assessment (LCA). The main environmental effects of four methods dealing with 1t copper tailings were as follows. Effects of Option 1 with stacking were: ecological toxicity (ET: 7.05×10-1) and human toxicity (HT: 1.467×10-7). Those of Option 2 with copper tailings replacing the clay in cement production were primary energy demand (PED) that decreased by as much as 10.25%. There was the largest drop, 19.51% down in the global warming potential (GWP) when Option 3 with copper tailings replacing the sand in autoclaved aerated concrete was used. As for Option 4 with copper tailings replacing the siliceous materials in the foam microcrystalline materials, there was the largest decline, a fall of 70.35% in its water consumption (WU). The three resource utilization schemes had different environmental benefits.
  • [1]
    杨传猛. 铁尾矿制备烧结砖和陶粒的研究[D]. 南京: 南京理工大学, 2015.
    [2]
    陈利兵, 陈永秀, 雷朝阳. 江西省特色产业集群发展的问题与对策[J]. 萍乡高等专科学校学报, 2012, 29(4): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-PXJY201204011.htm
    [3]
    张卫卫. 利用铁尾矿制备免烧砖的工艺与机理研究[D]. 北京: 中国地质大学(北京), 2015.
    [4]
    SINGO N K, KRAMERS J D. Retreatability analysis of the Musina copper mine tailings in South Africa: an exploratory study[J]. SN Applied Sciences, 2020, 2(10): 45-57. doi: 10.1007/s42452-020-03447-x
    [5]
    PIOTR R, PIOTR K, WLODZIMIERZ M, et al. The chemistry and toxicity of discharge waters from copper mine tailing impoundment in the valley of the Apuseni Mountains in Romania[J]. Environmental Science and Pollution Research International, 2017, 24(26): 21445-21458. doi: 10.1007/s11356-017-9782-y
    [6]
    程海翔, 张辉, 徐天有, 等. 铜矿尾矿资源化利用研究进展[J]. 化工进展, 2015, 34(增刊1): 192-195. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ2015S1036.htm
    [7]
    ESMAEILI J, ASLANI H, ONUAGULUCHI O. Reuse potentials of copper mine tailings in mortar and concrete composites[J]. Journal of Materials in Civil Engineering, 2020, 32(5): 845-857. http://www.researchgate.net/publication/339528510_Reuse_Potentials_of_Copper_Mine_Tailings_in_Mortar_and_Concrete_Composites/download
    [8]
    裘国华. 煤矸石、尾矿代粘土匹配低品位石灰石煅烧水泥熟料试验研究[D]. 杭州: 浙江大学, 2012.
    [9]
    黄晓燕, 倪文, 王中杰, 等. 铜尾矿制备无石灰加气混凝土的试验研究[J]. 材料科学与工艺, 2012, 20(1): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG201201004.htm
    [10]
    张宏泉, 李琦缘, 文进, 等. 铜尾矿资源的利用现状及展望[J]. 现代矿业, 2017, 33(1): 127-131. doi: 10.3969/j.issn.1674-6082.2017.01.031
    [11]
    中华人民共和国固体废物污染环境防治法[J]. 畜牧产业, 2021(1): 18-31.
    [12]
    江西省自然资源厅. 2018江西省自然资源年报[EB/OL]. [2019-06-14]. http://www.bnr.jiangxi.gov.cn/art/2019/6/14/art_28781_1359365.html.
    [13]
    任思达. 中国矿业经济绿色发展研究[D]. 武汉: 中国地质大学, 2019.
    [14]
    兰志强, 蓝卓越. 铜尾矿资源综合利用研究进展[J]. 矿产保护与利用, 2015(5): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201505014.htm
    [15]
    王洪涛, 翁端. 材料生命周期评价方法浅析[J]. 新材料产业, 2014(2): 28-30. doi: 10.3969/j.issn.1008-892X.2014.02.007
    [16]
    JURASCHEK M, BECKER M, THIEDE S, et al. Life cycle assessment for the comparison of urban and non-urban produced products[J]. Procedia CIRP, 2019, 80: 405-410. doi: 10.1016/j.procir.2019.01.017
    [17]
    陈健巧. 尾矿综合利用项目产业化成熟度评价[D]. 湘潭: 湘潭大学, 2015.
    [18]
    刘夏璐, 王洪涛, 陈建, 等. 中国生命周期参考数据库的建立方法与基础模型[J]. 环境科学学报, 2010, 30(10): 2136-2144. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201010030.htm
    [19]
    钱嘉伟, 倪文. 正交试验法在铜尾矿制备加气混凝土中的应用[J]. 新型建筑材料, 2012, 39(12): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201212001.htm
    [20]
    佟志芳, 范佳乐, 曾庆钋, 等. 利用金属尾矿制备泡沫微晶玻璃的研究现状及展望[J]. 有色金属科学与工程, 2020, 11(2): 34-41. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=202002005
    [21]
    张芸, 秦承露, 侯昊晨, 等. 基于生命周期评价法的贝壳资源化利用环境效益分析——以大连市为例[J]. 环境污染与防治, 2020, 42(1): 124-128. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR202001024.htm
    [22]
    秦承露. 基于LCA的城市产业共生系统环境效益评价研究[D]. 大连: 大连理工大学, 2019.
    [23]
    郭焱, 刘红超, 郭彬. 产品生命周期评价关键问题研究评述[J]. 计算机集成制造系统, 2014, 20(5): 1141-1148. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201405018.htm
    [24]
    HILAL B, ROGER P W, PIER R S, et al. Cradle-to-gate life cycle assessment of energy systems for residential applications by accounting for scaling effects[J]. Applied Thermal Engineering, 2019: 115062. http://www.sciencedirect.com/science/article/pii/S1359431119364749
    [25]
    Environment-Environmental Impact. Study findings on environmental impact are outlined in reports from city university of Hong Kong (Environmental Life Cycle Assessment of Textile Bio-recycling-Valorizing Cotton-polyester Textile Waste To Pet Fiber and Glucose Syrup)[J]. Ecology Environment & Conservation, 2020: 2041-2048.
    [26]
    黄和平, 胡晴, 王智鹏, 等. 南昌市生活垃圾卫生填埋生命周期评价[J]. 中国环境科学, 2018, 38(10): 3844-3852. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201810036.htm
    [27]
    杜淑华. 铜尾矿有价元素资源化应用基础研究[D]. 徐州: 中国矿业大学, 2013.
    [28]
    周昭志. 垃圾热解气化过程中氯的转化与控制特性及生命周期可持续性评价方法研究[D]. 杭州: 浙江大学, 2020.
    [29]
    肖作电. 基于全寿命期的泡沫混凝土墙体评价分析[D]. 沈阳: 沈阳大学, 2017.
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]MA Junqi, TAO Xingzhen, PENG Lin, XIE Yufei. Crack detection and recognition based on improved BiSeNetV2[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 91-97. DOI: 10.13264/j.cnki.ysjskx.2022.06.012
    [3]FANG Yi, ZHAO Wenning, HAN Xiuxun. Effects of thickness of absorption layer and buffer layer on the performance of Cu3BiS3 solar cell[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 50-55. DOI: 10.13264/j.cnki.ysjskx.2021.02.007
    [4]YANG Jingfu, ZHANG Yinghui, QIN Jing, ZHOU Qingyao, ZHAO Haibin, NIE Jincheng, XU Xingxing. Effect of final thickness on the microstructure, texture and magnetic properties of high-grade non-oriented electrical steel sheets[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 73-79. DOI: 10.13264/j.cnki.ysjskx.2020.03.010
    [5]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [6]HU Mingbing, CHEN Zhongxi, XIAO Fan, LI Gang, ZHAO Kui, ZHANG Liang, CHENG Sanjian. Thickness optimization for stage pillar based on blasting vibration[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 127-133. DOI: 10.13264/j.cnki.ysjskx.2017.01.022
    [7]HU Min, CHEN Min, LUO Yan, LIU Xiaoqiu. Effect of thermal spray coatings of WC-Co on the stress in jaw crusher tooth plate[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 83-87. DOI: 10.13264/j.cnki.ysjskx.2016.06.0014
    [8]Kang Weiquan, Yuan Haiping, Wu Xianzhen, Liu Jianwei, Yin Libing. Numerical Analysis on the Relationship between Safe Thickness of Surface Mine Bench and Span of Hidden Goaf[J]. Nonferrous Metals Science and Engineering, 2014, 5(1): 86-90. DOI: 10.13264/j.cnki.ysjskx.2014.01.017
    [9]ZHANG Ming-ming, WU Yu. On the aging behavior of Cu-Ni-Si-Zr alloy[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 12-16. DOI: 10.13264/j.cnki.ysjskx.2012.02.017
    [10]WANG Jian-ru, LIU Zu-wen, ZHU Qiang, XU Jian-hong. On the Factors Affecting the Phosephorus and Nitrogen Removal by Carrousel Oxidation Ditch Process[J]. Nonferrous Metals Science and Engineering, 2011, 2(1): 51-54.

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return