Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LIN Jin, CHEN Yunnen, LU Liuxian, LIU Jun, WANG Junfeng, QIU Tingsheng. Environmental benefit evaluation of copper tailings resource utilization based on LCA[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 106-112, 121. DOI: 10.13264/j.cnki.ysjskx.2021.03.014
Citation: LIN Jin, CHEN Yunnen, LU Liuxian, LIU Jun, WANG Junfeng, QIU Tingsheng. Environmental benefit evaluation of copper tailings resource utilization based on LCA[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 106-112, 121. DOI: 10.13264/j.cnki.ysjskx.2021.03.014

Environmental benefit evaluation of copper tailings resource utilization based on LCA

More Information
  • Received Date: March 17, 2021
  • Published Date: June 29, 2021
  • Taking the copper tailings as the research object, the environmental impact of the conventional treatment of copper tailings and three resource utilization methods of copper tailings were compared by using life cycle assessment (LCA). The main environmental effects of four methods dealing with 1t copper tailings were as follows. Effects of Option 1 with stacking were: ecological toxicity (ET: 7.05×10-1) and human toxicity (HT: 1.467×10-7). Those of Option 2 with copper tailings replacing the clay in cement production were primary energy demand (PED) that decreased by as much as 10.25%. There was the largest drop, 19.51% down in the global warming potential (GWP) when Option 3 with copper tailings replacing the sand in autoclaved aerated concrete was used. As for Option 4 with copper tailings replacing the siliceous materials in the foam microcrystalline materials, there was the largest decline, a fall of 70.35% in its water consumption (WU). The three resource utilization schemes had different environmental benefits.
  • [1]
    杨传猛. 铁尾矿制备烧结砖和陶粒的研究[D]. 南京: 南京理工大学, 2015.
    [2]
    陈利兵, 陈永秀, 雷朝阳. 江西省特色产业集群发展的问题与对策[J]. 萍乡高等专科学校学报, 2012, 29(4): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-PXJY201204011.htm
    [3]
    张卫卫. 利用铁尾矿制备免烧砖的工艺与机理研究[D]. 北京: 中国地质大学(北京), 2015.
    [4]
    SINGO N K, KRAMERS J D. Retreatability analysis of the Musina copper mine tailings in South Africa: an exploratory study[J]. SN Applied Sciences, 2020, 2(10): 45-57. doi: 10.1007/s42452-020-03447-x
    [5]
    PIOTR R, PIOTR K, WLODZIMIERZ M, et al. The chemistry and toxicity of discharge waters from copper mine tailing impoundment in the valley of the Apuseni Mountains in Romania[J]. Environmental Science and Pollution Research International, 2017, 24(26): 21445-21458. doi: 10.1007/s11356-017-9782-y
    [6]
    程海翔, 张辉, 徐天有, 等. 铜矿尾矿资源化利用研究进展[J]. 化工进展, 2015, 34(增刊1): 192-195. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ2015S1036.htm
    [7]
    ESMAEILI J, ASLANI H, ONUAGULUCHI O. Reuse potentials of copper mine tailings in mortar and concrete composites[J]. Journal of Materials in Civil Engineering, 2020, 32(5): 845-857. http://www.researchgate.net/publication/339528510_Reuse_Potentials_of_Copper_Mine_Tailings_in_Mortar_and_Concrete_Composites/download
    [8]
    裘国华. 煤矸石、尾矿代粘土匹配低品位石灰石煅烧水泥熟料试验研究[D]. 杭州: 浙江大学, 2012.
    [9]
    黄晓燕, 倪文, 王中杰, 等. 铜尾矿制备无石灰加气混凝土的试验研究[J]. 材料科学与工艺, 2012, 20(1): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG201201004.htm
    [10]
    张宏泉, 李琦缘, 文进, 等. 铜尾矿资源的利用现状及展望[J]. 现代矿业, 2017, 33(1): 127-131. doi: 10.3969/j.issn.1674-6082.2017.01.031
    [11]
    中华人民共和国固体废物污染环境防治法[J]. 畜牧产业, 2021(1): 18-31.
    [12]
    江西省自然资源厅. 2018江西省自然资源年报[EB/OL]. [2019-06-14]. http://www.bnr.jiangxi.gov.cn/art/2019/6/14/art_28781_1359365.html.
    [13]
    任思达. 中国矿业经济绿色发展研究[D]. 武汉: 中国地质大学, 2019.
    [14]
    兰志强, 蓝卓越. 铜尾矿资源综合利用研究进展[J]. 矿产保护与利用, 2015(5): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201505014.htm
    [15]
    王洪涛, 翁端. 材料生命周期评价方法浅析[J]. 新材料产业, 2014(2): 28-30. doi: 10.3969/j.issn.1008-892X.2014.02.007
    [16]
    JURASCHEK M, BECKER M, THIEDE S, et al. Life cycle assessment for the comparison of urban and non-urban produced products[J]. Procedia CIRP, 2019, 80: 405-410. doi: 10.1016/j.procir.2019.01.017
    [17]
    陈健巧. 尾矿综合利用项目产业化成熟度评价[D]. 湘潭: 湘潭大学, 2015.
    [18]
    刘夏璐, 王洪涛, 陈建, 等. 中国生命周期参考数据库的建立方法与基础模型[J]. 环境科学学报, 2010, 30(10): 2136-2144. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201010030.htm
    [19]
    钱嘉伟, 倪文. 正交试验法在铜尾矿制备加气混凝土中的应用[J]. 新型建筑材料, 2012, 39(12): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201212001.htm
    [20]
    佟志芳, 范佳乐, 曾庆钋, 等. 利用金属尾矿制备泡沫微晶玻璃的研究现状及展望[J]. 有色金属科学与工程, 2020, 11(2): 34-41. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=202002005
    [21]
    张芸, 秦承露, 侯昊晨, 等. 基于生命周期评价法的贝壳资源化利用环境效益分析——以大连市为例[J]. 环境污染与防治, 2020, 42(1): 124-128. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR202001024.htm
    [22]
    秦承露. 基于LCA的城市产业共生系统环境效益评价研究[D]. 大连: 大连理工大学, 2019.
    [23]
    郭焱, 刘红超, 郭彬. 产品生命周期评价关键问题研究评述[J]. 计算机集成制造系统, 2014, 20(5): 1141-1148. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201405018.htm
    [24]
    HILAL B, ROGER P W, PIER R S, et al. Cradle-to-gate life cycle assessment of energy systems for residential applications by accounting for scaling effects[J]. Applied Thermal Engineering, 2019: 115062. http://www.sciencedirect.com/science/article/pii/S1359431119364749
    [25]
    Environment-Environmental Impact. Study findings on environmental impact are outlined in reports from city university of Hong Kong (Environmental Life Cycle Assessment of Textile Bio-recycling-Valorizing Cotton-polyester Textile Waste To Pet Fiber and Glucose Syrup)[J]. Ecology Environment & Conservation, 2020: 2041-2048.
    [26]
    黄和平, 胡晴, 王智鹏, 等. 南昌市生活垃圾卫生填埋生命周期评价[J]. 中国环境科学, 2018, 38(10): 3844-3852. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201810036.htm
    [27]
    杜淑华. 铜尾矿有价元素资源化应用基础研究[D]. 徐州: 中国矿业大学, 2013.
    [28]
    周昭志. 垃圾热解气化过程中氯的转化与控制特性及生命周期可持续性评价方法研究[D]. 杭州: 浙江大学, 2020.
    [29]
    肖作电. 基于全寿命期的泡沫混凝土墙体评价分析[D]. 沈阳: 沈阳大学, 2017.
  • Related Articles

    [1]LU Liuxian, WANG Junfeng, LIN Jin, CHEN Yunnen, QIU Tingsheng. Study on the life cycle evaluation of the controlled enrichment process of scattered metals in the solid waste of multisource nonferrous smelting solid waste—taking tellurium enrichment as an example[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 137-144. DOI: 10.13264/j.cnki.ysjskx.2022.03.017
    [2]LI Yingshuang, LI Hengkai, XU Feng. Research progress of hyperspectral remote sensing monitoring in mine environmental contamination[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 108-114. DOI: 10.13264/j.cnki.ysjskx.2022.01.014
    [3]ZOU Guo-liang, WU Yi-ding, CAI Si-jing. Impacts of ion-adsorption rare earth's leaching process on resources and environment[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 100-106. DOI: 10.13264/j.cnki.ysjskx.2014.02.018
    [4]LIAO Lie-fa, MAO Ke-zhen. The environmental regulation strategies in China 's rare earth industry:Enlightenment from the foreign environmental regulation policy[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 89-94. DOI: 10.13264/j.cnki.ysjskx.2013.01.004
    [5]LIAO Qiu-min, ZENG Guo-hua. Sustainable development of rare earth trade: From environmental security deposit to environmental tax[J]. Nonferrous Metals Science and Engineering, 2012, 3(5): 111-115. DOI: 10.13264/j.cnki.ysjskx.2012.05.008
    [6]WANG Hui, DENG Guo-chun, ZHANG Wen-xiong. C++ Programming Design and Practice for the Surface Water Environment Impacting Prediction Assessment Model[J]. Nonferrous Metals Science and Engineering, 2011, 2(3): 67-71.
    [7]SUN Bo, WANG Hai-ning. Evaluation of Life Cycle Assessment (LCA) and Its Application on Non-ferrous Metals Industry[J]. Nonferrous Metals Science and Engineering, 2010, 1(02): 77-81.
    [8]XU Ling, KANG Ling-ling. Discussion on the Enterprise Life Cycle and the Managers' Concept Skills[J]. Nonferrous Metals Science and Engineering, 2004, 18(4): 6-8.
    [9]QIU Bin, HE Yue-guang. Probe into the distortion survey theory in rock and soil environmental engineering[J]. Nonferrous Metals Science and Engineering, 2001, 15(2): 1-3.
    [10]DU Wen. The impact of in-situ leaching on the natural environment of ion-type RE mine[J]. Nonferrous Metals Science and Engineering, 2001, 15(1): 41-44.
  • Cited by

    Periodical cited type(9)

    1. 刘跃廷,张强,原晓红,谢文豪. 重庆市“无废城市”建设前后碳减排潜力分析. 环境科学. 2025(01): 88-99 .
    2. 原慧聪,桑义敏,杨磊,杨婷玉,宋权威,张雪,甄占胜. 基于生命周期评价的土壤热脱附修复技术绿色可持续性分析. 石油炼制与化工. 2024(09): 118-128 .
    3. 毛喆,杨涛涛,张金桃,廖斌. 基于铜尾矿生态化利用的矿山修复技术试验研究. 地球环境学报. 2024(05): 790-798 .
    4. 高洁,呼和涛力,袁汝玲,吴丹,雷廷宙,陈勇. “无废城市”试点建设与碳减排效益分析:以徐州市为例. 环境工程学报. 2023(03): 979-989 .
    5. 曹建忠,唐白婷. 白云鄂博氧化矿选矿的环境影响分析. 中国资源综合利用. 2023(07): 127-131 .
    6. 孙艳丽,邹桢,曾庆东,和秀,刘雪媛. 基于LCA法评价铁尾矿资源化利用对环境的影响. 辽宁工程技术大学学报(自然科学版). 2023(03): 301-307 .
    7. 王凤丹,胥孝川,顾晓薇,赵昀奇,王青. 数学模型在尾矿混凝土性能优化中的应用. 矿业研究与开发. 2022(08): 189-194 .
    8. 王元战,许元晨,赵宇鹏,李青美,王禹迟. 矿物掺合料混凝土的性能与环境效益综合评价方法. 环境工程. 2022(08): 197-205+101 .
    9. 张旅 ,杨建新 ,刘晶茹 ,孟献昊 . 基于生命周期评价的铜尾渣资源化利用环境效益——以制取蒸压砖为例. 岩石矿物学杂志. 2022(05): 950-958 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (103) PDF downloads (5) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return