Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
KANG Jianxiong, WANG Zekai, LIU Xiaofeng, HU Yunzhen, HUANG Wanfu. Study on the enhancement effect of ultrasonic pretreatment on the flotation process of copper and molybdenum separation[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 130-136. DOI: 10.13264/j.cnki.ysjskx.2022.03.016
Citation: KANG Jianxiong, WANG Zekai, LIU Xiaofeng, HU Yunzhen, HUANG Wanfu. Study on the enhancement effect of ultrasonic pretreatment on the flotation process of copper and molybdenum separation[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 130-136. DOI: 10.13264/j.cnki.ysjskx.2022.03.016

Study on the enhancement effect of ultrasonic pretreatment on the flotation process of copper and molybdenum separation

More Information
  • Received Date: September 06, 2021
  • Revised Date: October 24, 2021
  • Available Online: July 15, 2022
  • The porphyry copper-molybdenum ore has the characteristics of complex ore distribution, fine disseminated grain size, and similar floatability of molybdenite and chalcopyrite, which lead to the difficulty of copper and molybdenum separation in the flotation process. On the basis of the unique characteristics that ultrasound can change the properties of pulp, mineral surfaces and pharmaceutical solutions, ultrasonic technology was used to dedrug copper and molybdenum ore to strengthen the flotation separation of copper and molybdenum. Research on pure mineral flotation shows that the separation of chalcopyite and molybdenite can be effectively realized by ultrasonic treatment. The actual ore separation shows that the mixed copper-molybdenum concentrate has better indexes when the grinding concentration is 66.7%, pulp pH =10.0, lime dosage 450 g/t, sodium silicate 1 kg/t, YC agent + butyl xanthate dosage 160 g/t+50 g/t, 2# oil 30 g/t and grinding fineness (-0.074 mm) 77.2%. At this time, in the mixed copper-molybdenum concentrate, the grade of molybdenum is 2.96% with a recovery of 87.44%, and the grade of copper is 0.76% with a recovery of 92.77%. Ultrasonic pretreatment with a power of 2 000 W was conducted on the mixed copper-molybdenum concentrate for 20 min at a 10% pulp concentration. The flotation conditions were pulp pH=10, kerosene dosage 80 g/t, 2# oil dosage 15 g/t and sodium sulfide dosage 300 g/t. In the final molybdenum concentrate, the Mo grade was 22.19%, with a recovery of 95.95% and a total molybdenum recovery of 83.90%. In the copper concentrate, the copper grade is 11.88% with a recovery of 98.27% and a total copper recovery of 91.16%. The separation of copper and molybdenum is well carried out.
  • [1]
    李尧, 文书明, 丰奇成, 等. 铜钼混合精矿浮选分离技术研究进展[J]. 金属矿山, 2018(7): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201807003.htm
    [2]
    朱文龙, 黄万抚. 江西某铜钼钨多金属矿石选矿工艺研究[J]. 有色金属科学与工程, 2010, 1(2): 13-18. http://ysjskxygc.xml-journal.net/article/id/5c943e16-a33e-49bc-9e1a-a73ad66f2036
    [3]
    罗曦, 黎应书, 郭宁宁, 等. 云南金平某铜矿床成矿条件分析[J]. 有色金属(矿山部分), 2011, 63(2): 31-33. doi: 10.3969/j.issn.1671-4172.2011.02.010
    [4]
    雷贵春. 铜钼分离新技术及其在德兴铜矿应用的展望[J]. 江西有色金属, 1999(3): 23-26. doi: 10.3969/j.issn.1674-9669.1999.03.007
    [5]
    张亮, 杨卉芃, 冯安生, 等. 全球钼矿资源现状及市场分析[J]. 矿产综合利用, 2019(3): 11-16. doi: 10.3969/j.issn.1000-6532.2019.03.003
    [6]
    王剑, 刘子龙, 陈国宝, 等. 铜钼浮选分离中硫化钠的消耗机理[J]. 东北大学学报(自然科学版), 2018, 39(3): 362-366. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201803012.htm
    [7]
    赖桂华. 铜钼混合精矿高效分离试验研究与应用[J]. 黄金, 2021, 42(3): 60-62. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ202103012.htm
    [8]
    谭鑫, 何发钰, 谭欣. 某铜钼浮选尾矿浮选试验研究[J]. 矿冶, 2015, 24(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201506003.htm
    [9]
    李全瑞. 丰山铜矿铜钼分离工业性试生产实践[J]. 江西有色金属, 1997(4): 16-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS199704004.htm
    [10]
    刘水红. 某低品位铜钼矿石铜钼优先浮选试验[J]. 现代矿业, 2018, 34(10): 94-98. doi: 10.3969/j.issn.1674-6082.2018.10.026
    [11]
    张颖, 彭会清, 罗木林. 江西某铜矿铜浮选工艺优化研究[J]. 现代矿业, 2020, 36(1): 148-151. doi: 10.3969/j.issn.1674-6082.2020.01.043
    [12]
    郭灵敏. 乌努格吐山铜钼矿选矿新工艺试验研究[J]. 铜业工程, 2011(2): 6-9. doi: 10.3969/j.issn.1009-3842.2011.02.002
    [13]
    张乃旭, 刘文刚, 魏德洲. 铜钼混合精矿浮选分离工艺及分离抑制剂研究进展[J]. 金属矿山, 2018(4): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201804006.htm
    [14]
    冯鹏发, 党晓明, 胡林, 等. 钼及其化合物的最新用途[J]. 中国钼业, 2015, 39(1): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY201501021.htm
    [15]
    李怀先. 钼选矿技术的进展[J]. 江西有色金属, 1992(4): 213-220. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS199204005.htm
    [16]
    黄万抚, 胡运祯, 黄李金鸿, 等. 超声技术在矿物加工中的应用进展[J]. 应用化工, 2020, 49(12): 3172-3177. doi: 10.3969/j.issn.1671-3206.2020.12.045
    [17]
    胡运祯. 超声处理铜钼混合精矿对铜钼分离浮选过程的强化作用研究[D]. 赣州: 江西理工大学, 2020.
    [18]
    侯凯, 童雄, 谢贤, 等. 浮选过程的预处理技术的研究进展[J]. 矿产综合利用, 2014(3): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL201403007.htm
    [19]
    陈经华, 孙传尧. 超声波清洗对方铅矿、闪锌矿和黄铁矿可浮性的影响[J]. 矿冶, 2005, 14(4): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ200504005.htm
    [20]
    M·密斯拉, 谭程鹏, 李长根, 等. 超声波预处理改善毒砂浮选[J]. 国外金属矿选矿, 2004, 41(6): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK200406006.htm
    [21]
    彭樱, 李育彪, 王洪铎, 等. 超声波对黄铜矿与辉钼矿可浮性的影响[J]. 金属矿山, 2020(2): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202002006.htm
    [22]
    李勇, 章毛连, 张雪梅. 超声波清洗对石英砂粒度和白度影响的研究[J]. 硅酸盐通报, 2014, 33(2): 284-290. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201402013.htm
    [23]
    郭文倩. 超声波强化浸出含锗渣中锗的实验研究[D]. 昆明: 昆明理工大学, 2016.
    [24]
    李健飞, 李梅, 高凯, 等. 超声波强化浸出高品位混合稀土精矿[J]. 稀有金属, 2017, 41(2): 196-202. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201702014.htm
    [25]
    CHEN Y R, TRUONG V N T, BU X N, et al. A review of effects and applications of ultrasound in mineral flotation[J]. Ultrasonics Sonochemistry, 2020, 60: 98-109.
    [26]
    马永义, 王毓华, 卢东方, 等. 超声波预处理对不同体系中方铅矿浮选行为的影响[J]. 矿冶工程, 2018, 38(3): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201803016.htm
    [27]
    SHU K Q, XU L H, WU H Q, et al. Effects of ultrasonic pre-treatment on the flotation of ilmenite and collector adsorption[J]. Minerals Engineering, 2019, 137: 124-132.
    [28]
    陈启平, 陈达文. 声波振动调制捕收剂和起泡剂对硫化矿浮选作用的研究[J]. 国外金属矿选矿, 1993, 30(7): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK199307002.htm
    [29]
    陈兰兰, 卢东方, 王毓华, 等. 超声波技术在矿物浮选中的研究、应用现状及发展趋势[J]. 中国有色金属学报, 2021, 31(4): 1042-1056. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202104022.htm
  • Related Articles

    [1]LEI Yu, HU Xinbo, ZHU Chuncheng, XU Qian, SUN Chenteng, ZOU Xingli, CHENG Hongwei, LU Xionggang. Mechanism of ultrasound-assisted replacement for copper removal based on products morphology[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 180-188. DOI: 10.13264/j.cnki.ysjskx.2024.02.004
    [2]FANG Xihui, ZHANG Cun1, XIA Yanyuan. Different factors on flotation separation kinetics of chalcopyrite and pyrite[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 110-114. DOI: 10.13264/j.cnki.ysjskx.2016.06.0019
    [3]LI Liyuan, NIE Qingmin, ZHONG Jianfeng, AI Guanghua. Experimental study on a high grade molybdenum-bismuth sulfide ore[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 85-90. DOI: 10.13264/j.cnki.ysjskx.2016.04.015
    [4]SHI Guiming, ZHAO Ruquan, ZHOU Yichao. Flotation of a very low grade platinum-copper-nickel ore in Sichuan[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 104-109. DOI: 10.13264/j.cnki.ysjskx.2016.02.019
    [5]OU Le-ming, GENG Shao-pei, FENG Qi-ming. Ultrasonic used in foaming and the effect on gas hold-up[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 80-84. DOI: 10.13264/j.cnki.ysjskx.2015.05.015
    [6]QIU Tingsheng, YAN Huashan, AI Guanghua, QIU Xianhui. Test study of improving copper sorting index by flash flotation[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 106-110. DOI: 10.13264/j.cnki.ysjskx.2014.05.020
    [7]Zeng Qingyun, ZHANG Yong, SHUAI Gengwei. Application advances of microwave and ultrasonic in tungsten metallurgy[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 15-19. DOI: 10.13264/j.cnki.ysjskx.2014.02.003
    [8]ZHANG Xing-wang, HUANG Xiao-yi, LAI Hong-wei. Study on floc-flotation of fine molybdenite particles[J]. Nonferrous Metals Science and Engineering, 2012, 3(6): 65-68. DOI: 10.13264/j.cnki.ysjskx.2012.06.013
    [9]ZHU Wen-long, HUANG Wan-fu. Experimental Study on the Beneficiation Process for a Copper -tungsten -molybdenum Ore from Jiangxi[J]. Nonferrous Metals Science and Engineering, 2010, 24(2): 13-18.
    [10]XU Ji-hui. Geological Research on the Fourth Molybdenum Deposit of Jiangxi Chengmenshan Copper Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 10-12.
  • Cited by

    Periodical cited type(4)

    1. 李世涛,田小松,王飞旺,梁泽跃,杨斌,戴惠新,唐冬冬. 铜钼混合精矿预处理及强化分离研究进展. 有色金属(选矿部分). 2025(01): 21-32 .
    2. 雷宇,胡新波,朱纯成,许茜,孙晨藤,邹星礼,程红伟,鲁雄刚. 基于产物形貌的超声波辅助置换除铜的机理研究. 有色金属科学与工程. 2024(02): 180-188 . 本站查看
    3. 徐略渭,徐国钻,何秉轩,黄超,张欣,梁勇. NaHSO_4焙烧-HCl浸出从白钨矿中提取钨的工艺研究. 稀有金属. 2023(11): 1594-1602 .
    4. 徐啟斌,李建平,高标,郭鑫博,王学林. 铂族废催化剂湿法分离回收技术. 稀有金属. 2023(12): 1689-1704 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (140) PDF downloads (15) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return