Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
CHEN Shixian, SU Hao, DAI Xi. Pipeline leaching process of the anode material of failed lithium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 89-98. DOI: 10.13264/j.cnki.ysjskx.2022.03.012
Citation: CHEN Shixian, SU Hao, DAI Xi. Pipeline leaching process of the anode material of failed lithium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 89-98. DOI: 10.13264/j.cnki.ysjskx.2022.03.012

Pipeline leaching process of the anode material of failed lithium-ion batteries

More Information
  • Received Date: July 05, 2021
  • Revised Date: September 25, 2021
  • Available Online: July 15, 2022
  • At present, leaching is a key part of wet recovery, the main method to recycle the anode materials of failed lithium-ion batteries. However, tank leaching, generally used in industrial production, is not closed. During the reaction process, some residual impurities in the material will produce gas under the acidic system, which seriously deteriorates the production environment. At the same time, the reaction will consume many acid-base reagents and oxidants and produce a large amount of wastewater and waste acid. In view of these problems, a scheme of using a tubular reactor to leach the cathode material of a failed lithium-ion battery was proposed. The cathode material of failed lithium cobalt oxide was used as the raw material in this experiment. The effects of different conditions on the leaching effect were studied. It is found that the leaching effect of hydrogen peroxide is not ideal, and the leaching rate is effectively improved by using solid reducing agents such as glucose. Under the same conditions, compared with hydrogen peroxide and glucose, the leaching rates of cobalt and lithium increase from 59.18% and 92.57% to 85.95% and 99.47%, respectively.
  • [1]
    AMINE K, BELHROUAK I, CHEN Z, et al. Nanostructured anode material for high-power battery system in electric vehicles[J]. Advanced Materials, 2010, 22(28): 3052-3057. doi: 10.1002/adma.201000441
    [2]
    涂康安. 锂离子电池三元正极材料现状及发展趋势[J]. 当代化工研究, 2021(17): 17-18. doi: 10.3969/j.issn.1672-8114.2021.17.008
    [3]
    彭华. 中国新能源汽车产业发展及空间布局研究[D]. 吉林: 吉林大学, 2019.
    [4]
    赵天瑜, 宋云峰, 李永立, 等. 萃取法从废旧锂离子电池正极材料浸出液中提取锂[J]. 有色金属科学与工程, 2019, 10(1): 49-53. doi: 10.13264/j.cnki.ysjskx.2019.01.008
    [5]
    ZENG X, LI J, REN Y. Prediction of various discarded lithium batteries China[C]//2012, IEEE International Symposium on Sustainable Systems and Technology(ISSST), DOI: 10.1109/ISSST.2012.6228021.
    [6]
    CHEN X, CHEN Y, ZHOU T, et al. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries[J]. Waste Management, 2015, 38(1): 349-356.
    [7]
    杨宇, 梁精龙, 李慧, 等. 废旧锂离子电池回收处理技术研究进展[J]. 矿产综合利用, 2018(6): 7-12. doi: 10.3969/j.issn.1000-6532.2018.06.002
    [8]
    李伟利. 新能源车发展呈现四大趋势[J]. 汽车纵横, 2021(6): 46-47. doi: 10.3969/j.issn.2095-1892.2021.06.011
    [9]
    高伟. 新能源汽车产业链强势崛起潜在空间巨大[N]. 经济参考报, 2021-09-16(003).
    [10]
    中国产业信息网. 2019年动力电池回收行业需求情况、回收市场规模分析与预测[J]. 行业, 2019: 36-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JSZS201904009.htm
    [11]
    朱国才. 废旧动力锂离子电池回收再利用产业化进展[J]. 新材料产业, 2018(3): 31-33. https://www.cnki.com.cn/Article/CJFDTOTAL-XCLY201803006.htm
    [12]
    GATZ, SA Q, APELIAN D, et al. A closed loop process for recycling spent lithium ion batteries[J]. Journal of Power Sources, 2014, 262: 255-262. doi: 10.1016/j.jpowsour.2014.03.126
    [13]
    ZENG X, LI J, SINGH N. Recycling spent lithium—ion battery: a critical review[J]. Critical Review in Environmental & Technology, 2014, 44(10): 1129-1165.
    [14]
    LI L, DUNN J B, ZHANG X X, etal. Recovery of metals from spent lithium-ion batteries with organic acid as leaching reagents and environmental assessment[J]. Journal of Power Sources, 2013, 233: 180-189. doi: 10.1016/j.jpowsour.2012.12.089
    [15]
    岳鹏程. 废旧锂离子电池中有价金属回收的现状及展望[J]. 世界有色金属, 2021(12): 216-218. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO202112100.htm
    [16]
    潘英俊. 以磷酸铁锂为正极材料的废旧锂离子电池回收及再利用[D]. 哈尔滨: 哈尔滨工业大学, 2012.
    [17]
    赵磊. 废旧锂离子电池有机酸浸出回收钴、锂金属研究[D]. 扬州: 扬州大学, 2021.
    [18]
    孟奇, 张英杰, 董鹏, 等. 废旧锂离子电池中钴、锂的回收研究进展[J]. 化工进展, 2017, 36(9): 3485-3491. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201709046.htm
    [19]
    何双华, 朱华炳, 柏宇轩. 废动力电池破碎产物的风选特性分析及试验[J]. 中国科技论文, 2017, 12(10): 1118-1123. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201710007.htm
    [20]
    朱曙光, 贺文智, 李光明, 等. 废锂离子电池中失效钴酸锂材料超声再生[J]. 中国有色金属学报, 2014, 24(10): 2525-2529. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201410013.htm
    [21]
    李之钦. 三元锂离子电池正极废料中有价金属元素的混合酸浸提与分离再生研究[D]. 上海: 上海第二工业大学, 2021.
    [22]
    金泳勋, 松田光明, 董晓辉, 等. 用浮选法从废锂离子电池中回收锂钴氧化物[J]. 国外金属矿选矿, 2003(7): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK200307008.htm
    [23]
    缪月晴, 张玉, 黄澳, 等. 废锂离子电池回收技术研究进展[J]. 现代盐化工, 2021, 48(1): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKZ202101005.htm
    [24]
    王萌萌, 张付申. 废旧锂电池的机械化学处理方法与机制[J]. 环境工程学报, 2017, 11(2): 1069-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201702063.htm
    [25]
    朱坤. 废旧锂离子电池中LiCoO2高温热解还原机理及钴的回收[D]. 南宁: 广西大学, 2019.
    [26]
    林娇, 刘春伟, 曹宏斌, 等. 基于高温化学转化的废旧锂离子电池资源化技术[J]. 化学进展, 2018, 30(9): 1445-1454. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201809015.htm
    [27]
    宗毅, 熊道陵, 王露琦, 等. 废旧锂电池废料除铝及回收铝工艺研究[J]. 有色金属科学与工程, 2018, 9(5): 26-32. doi: 10.13264/j.cnki.ysjskx.2018.05.005
    [28]
    杨健, 秦吉涛, 李芳成, 等. 废旧锂离子电池的湿法回收研究进展[J]. 中南大学学报(自然科学版), 2020, 51(12): 3261-3278. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202012001.htm
    [29]
    汪成东, 施素杰, 朱浪, 等. 废旧锂电池的回收处理进展及趋势[J]. 玉溪师范学院学报, 2020, 36(3): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YXSG202003010.htm
    [30]
    申勇峰. 从废锂离子电池中回收钴[J]. 有色金属, 2002(4): 69-70. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200204018.htm
    [31]
    彭腾, 冉雪玲, 杨宁, 等. 采用柠檬酸浸出—电沉积法回收废锂电池中的钴[J]. 湿法冶金, 2021, 40(3): 196-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ202103005.htm
    [32]
    潘晓勇, 彭玲, 陈伟华, 等. 废旧锂离子电池中钴和锂的回收及综合利用[J]. 中国有色金属学报, 2013, 23(7): 2047-2054. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201307037.htm
    [33]
    徐军, 彭玲, 汪年结, 等. 废旧锂离子电池浸出液中钴离子的P204萃取试验研究[J]. 机电产品开发与创新, 2020, 33(5): 8-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JDCP202005005.htm
    [34]
    金玉健, 梅光军, 李树元. 盐析法从锂离子电池正极浸出液中回收钴盐的研究[J]. 环境科学学报, 2006(7): 1122-1125. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200607012.htm
    [35]
    欧秀芹, 孙新华, 赵庆云, 等. 锂离子废电池资源化技术进展[J]. 无机盐工业, 2005(9): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG200509003.htm
    [36]
    SHAFAQ M, HUMMA A C, MUHAMMAD A M, et al. Bioleaching of metals from low grade sulfidic ores[M]. Lahore, Pakistan, 2017.
    [37]
    辛亚云. 废旧锂离子电池中有价金属离子的生物淋滤及其机理研究[D]. 北京: 北京理工大学, 2016.
    [38]
    张颢竞, 程洁红, 朱铖, 等. 用酸浸—生物浸出工艺从废锂离子电池电极材料中回收金属钴铜镍[J]. 湿法冶金, 2019, 38(1): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201901006.htm
    [39]
    张飞, 陆颖舟. 一步法回收和再生废旧钴酸锂电池中的钴酸锂[J]. 化工进展, 2019, 38(8): 3874-3880. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201908044.htm
    [40]
    郭丽萍, 方伟, 杜小弟, 等. 用硫代硫酸钠取代双氧水还原钴酸锂的研究[J]. 无机盐工业, 2006(5): 49-50. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG200605017.htm
    [41]
    高桂兰. 有机酸还原性体系浸出回收废弃锂离子电池正极材料的研究[D]. 上海: 上海大学, 2019.
    [42]
    孟奇. 废旧钴酸锂材料中钴回收及机理研究[D]. 昆明: 昆明理工大学, 2018.
  • Cited by

    Periodical cited type(1)

    1. 保雪凡,邓志敢,魏昶,樊刚,李兴彬,李旻廷. 碳酸锂热分解工艺研究现状及发展. 有色金属科学与工程. 2023(04): 467-472 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (178) PDF downloads (20) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return