Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
MA Siyi, ZHANG Weijian, SU Ruiming, LI Guanglong, QU Yingdong, LI Rongde. Research status of regression and reaging on 7xxx series aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 38-50. DOI: 10.13264/j.cnki.ysjskx.2022.02.006
Citation: MA Siyi, ZHANG Weijian, SU Ruiming, LI Guanglong, QU Yingdong, LI Rongde. Research status of regression and reaging on 7xxx series aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 38-50. DOI: 10.13264/j.cnki.ysjskx.2022.02.006

Research status of regression and reaging on 7xxx series aluminum alloy

More Information
  • Received Date: May 15, 2021
  • Revised Date: August 27, 2021
  • Available Online: May 09, 2022
  • As a representative high-strength aluminum alloy, the 7xxx series aluminum alloy has been widely used in aerospace and transportation fields for its high strength, good toughness and corrosion resistance and other excellent properties. This kind of heat treatable aluminum alloy is sensitive to microstructure, and its properties are affected by the nucleation, growth and distribution of precipitates in the alloy. Its mechanical properties and corrosion resistance could be well combined by using the three-stage aging process-retrogression and reaging treatment-to change the precipitate state through the effective combination of preaging, retrogression and reaging. At present, many studies of its application on the 7xxx series aluminum alloy have been conducted, and some progress has been made. In this paper, the method of retrogression and reaging treatment was first introduced, and its effect on the microstructure and properties of 7xxx series aluminum alloy was then overviewed. Finally, the research status in this field was summarized.
  • [1]
    杨少华, 刘增威, 林明, 等. 7075铝合金在不同pH值NaCl溶液中的腐蚀行为[J]. 有色金属科学与工程, 2017, 8(4): 7-11. doi: 10.13264/j.cnki.ysjskx.2017.04.002
    [2]
    PANG J, LIU F, LIU J, et al. Friction stir processing of aluminium alloy AA7075: microstructure, surface chemistry and corrosion resistance[J]. Corrosion Science, 2016, 106: 217-228. doi: 10.1016/j.corsci.2016.02.006
    [3]
    黄晶明, 王昭文, 刘增威, 等. 采用SECM分析7075铝合金的局部腐蚀行为[J]. 有色金属科学与工程, 2019, 10(3): 14-20. doi: 10.13264/j.cnki.ysjskx.2019.03.003
    [4]
    LI H, CAO F, GUO S, et al. Effects of Mg and Cu on microstructures and properties of spray-deposited Al-Zn-Mg-Cu alloys[J]. Journal of Alloys and Compounds, 2017, 719: 89-96. doi: 10.1016/j.jallcom.2017.05.101
    [5]
    CAO C, ZHANG D, WANG X, et al. Effects of Cu addition on the precipitation hardening response and intergranular corrosion of Al-5.2Mg-2.0Zn (wt. %) alloy[J]. Materials Characterization, 2016, 122: 177-182. doi: 10.1016/j.matchar.2016.11.004
    [6]
    FANG H, CHAO H, CHEN K. Effect of recrystallization on intergranular fracture and corrosion of Al-Zn-Mg-Cu-Zr alloy[J]. Journal of Alloys and Compounds, 2015, 622: 166-173. doi: 10.1016/j.jallcom.2014.10.044
    [7]
    NANDANA M S, BHAT K U, MANJUNATHA C M. Influence of retrogression and re-ageing heat treatment on the fatigue crack growth behavior of 7010 aluminum alloy[J]. Procedia Structural Integrity, 2019, 14: 314-321. doi: 10.1016/j.prostr.2019.05.039
    [8]
    王井井, 黄元春, 刘宇, 等. 时效工艺对Al-Zn-Mg-Cu-Zr-Er铝合金组织与耐腐蚀性影响[J]. 有色金属科学与工程, 2018, 9(2): 47-55. doi: 10.13264/j.cnki.ysjskx.2018.02.009
    [9]
    WINDENER C A, BURFORD D A, KUMAR B, et al. Evaluation of post-weld heat treatments to restore the corrosion resistance of friction stir welded aluminum alloy 7075-T73 vs. 7075-T6[J]. Materials Science Forum, 2007, 539-543: 3781-3788.
    [10]
    冯迪, 张新明, 刘胜胆, 等. 预时效温度及回归加热速率对7150铝合金显微组织及性能的影响[J]. 中国有色金属学报, 2013, 23(5): 1173-1181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201305000.htm
    [11]
    韩小磊, 熊柏青, 张永安, 等. 欠时效态7150合金的高温回归时效行为[J]. 中国有色金属学报, 2011, 21(1): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201101009.htm
    [12]
    张新明, 李鹏辉, 刘胜胆, 等. 回归时间对7050铝合金晶间腐蚀性能的影响[J]. 中国有色金属学报, 2008, 18(10): 1795-1801. doi: 10.3321/j.issn:1004-0609.2008.10.008
    [13]
    KOMISAROV V, TALIAMKER M, CINA B. Effect of retrogression and reaging on the precipitates in an 8090 Al-Li alloy[J]. Materials Sciemce amd Engineering A, 1998, 242(1/2): 39-49.
    [14]
    ARAN A. Optimization of the strength and intergranular corrosion properties of the 7075-Al alloy by retrogression and reaging[J]. Zeitschrift Fur Metallkde, 1989, 80(3): 170-172.
    [15]
    URAL K. Study of optimization of heat-treatment conditions in retrogression and reaging treatment of 7075-T6 aluminum alloy[J]. Journal of Materials Science Letter, 1994, 13(5): 383-340. doi: 10.1007/BF00420806
    [16]
    冯春, 刘志义, 宁爱林, 等. 超高强铝合金RRA热处理工艺的研究进展[J]. 材料导报, 2006, 20(4): 98-101. doi: 10.3321/j.issn:1005-023X.2006.04.027
    [17]
    ÖZER G, KISASOZ A, KARAASLAN A. Investigation of the relationship between intergranular corrosion and retrogression and reaging in the AA6063[J]. Materials and Corrosion, 2019, 70(12): 2256-2265. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201507024.htm
    [18]
    REDA Y, ABDEL-KARIM R, ELMAHALLAWI I. Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging[J]. Materials Science and Engineering A, 2008, 485: 468-475. doi: 10.1016/j.msea.2007.08.025
    [19]
    KRISHNANUNNI S, GUPTA R K, AJITHKUMAR G, et al. Investigation on Effect of Optimized RRA in Strength and SCC Resistance for Aluminium Alloy AA7010[J]. Materials Today: Proceedings, 2020, 27: 2385-2389. doi: 10.1016/j.matpr.2019.09.136
    [20]
    LUIGGI N, VALERA M D V. Kinetic study of an AA7075 alloy under RRA heat treatment[J]. Journal of Thermal Analysis and Calorimetry, 2017, 130(3): 1885-1902. doi: 10.1007/s10973-017-6683-8
    [21]
    李晨, 李志辉, 黄树晖, 等. 7055铝合金多道次热变形及固溶处理中的组织演变[J]. 材料热处理学报, 2015, 36(12): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201512010.htm
    [22]
    李国锋, 张新明. 回归冷却速率对7050铝合金力学性能及晶间腐蚀抗力的影响[J]. 中国有色金属学报, 2013, 23(5): 1234-1240. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201305008.htm
    [23]
    JIANG J T, XIAO W Q, YANG L, et al. Ageing behavior and stress corrosion cracking resistance of a non-isothermally aged Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering A, 2014, 605: 167-175. doi: 10.1016/j.msea.2014.03.023
    [24]
    LIU Y, JIANG D M, LI B Q, et al. Effect of cooling aging on microstructure and mechanical properties of an Al-Zn-Mg-Cu alloy[J]. Materials and Design, 2014, 57: 79-86. doi: 10.1016/j.matdes.2013.12.024
    [25]
    LIU Y, JIANG D M, LIB Q, et al. Heating aging behavior of Al-8.35Zn-2.5Mg-2.25Cu alloy[J]. Materials and Design, 2014, 60: 116-124. doi: 10.1016/j.matdes.2014.03.060
    [26]
    PENG X Y, GUO Q, LIANG X P, et al. Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering A, 2007, 688: 146-154.
    [27]
    LIU Y. Influence of repetitious non-isothermal aging on microstructure and strength of Al-Zn-Mg-Cu alloy[J]. Journal of Alloy and Compounds, 2016, 689: 632-640. doi: 10.1016/j.jallcom.2016.08.017
    [28]
    SU R M, QU Y D, LI R X, et al. Study of ageing treatment on spray forming Al-Zn-Mg-Cu alloy[J]. Applied Mechanics and Materials, 2012, 217/218/219: 1835-1838.
    [29]
    OLIVEIRA A F, BARROS M C, CARDOSO K R, et al. The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminium alloys[J]. Materials Science and Engineering A, 2004, 379(1/2): 321-326.
    [30]
    曾渝, 尹志民, 朱远志, 等. RRA处理对超高强铝合金微观组织与性能的影响[J]. 中国有色金属学报, 2004, 14(7): 1188-1194. doi: 10.3321/j.issn:1004-0609.2004.07.024
    [31]
    LIN J C, LIAO H L, JEHNG W D, et al. Effect of heat treatments on the tensile strength and SCC-resistance of AA7050 in an alkaline saline solution[J]. Corrosion Science, 2006, 48(10): 3139-3156. doi: 10.1016/j.corsci.2005.11.009
    [32]
    YANG W C, JI S X, ZHANG Q, et al. Investigation of mechanical and corrosion properties of an Al-Zn-Mg-Cu alloy under various ageing conditions and interface analysis of η' precipitate[J]. Materials and Design, 2015, 85: 752-761. doi: 10.1016/j.matdes.2015.06.183
    [33]
    韩念梅, 张新明, 刘胜胆, 等. 回归再时效对7050铝合金强度和断裂韧性的影响[J]. 中国有色金属学报, 2012, 22(7): 1871-1882. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201207005.htm
    [34]
    NANDANA M S, BHAT K U, MANJUNATHA C M. Improved fatigue crack Growth resistance by retrogression and re-ageing heat treatment in 7010 aluminum alloy[J]. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42(3): 719-731. doi: 10.1111/ffe.12946
    [35]
    CHEN X, LIU Z Y, LIN M, et al. Enhanced fatigue crack propagation resistance in an Al-Zn-Mg-Cu alloy by retrogression and reaging treatment[J]. Journal of Materials Engineering and Performance, 2012 (21): 2345-2353.
    [36]
    REDA Y, ABDEL-KARIM R, ELMAHALLAWI I. Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging[J]. Materials Science and Engineering A, 2008, 485: 468-475. doi: 10.1016/j.msea.2007.08.025
    [37]
    SU R M, QU Y D, LI R D. Effect of aging treatments on the mechanica andcorrosive behaviors of spray-formed 7075 alloy[J]. Journal of Materials Engineering and Performance, 2014, 23(11): 3842-3848. doi: 10.1007/s11665-014-1186-2
    [38]
    MARLAUD T, DESCHAMPS A, BLEY F, et al. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu alloy[J]. Acta Mater, 2010, 58: 4814-4826. doi: 10.1016/j.actamat.2010.05.017
    [39]
    LI J F, BIRBILIS N, LI C X, et al. Influence of retrogression temperature and time on the mechanical properties and exfoliation corrosion behavior of aluminium alloy AA7150[J]. Materials Characterization, 2009, 60: 1334-1341. doi: 10.1016/j.matchar.2009.06.007
    [40]
    ZHOU L, CHEN K H, CHEN S Y, et al. Correlation between stress corrosion cracking resistance and grain-boundary precipitates of a new generation high Zn-containing 7056 aluminum alloy by non-isothermal aging and re-aging heat treatment[J]. Journal of Alloys and Compounds, 2020, 850: 156717.
    [41]
    MARLAUD T, DESCHAMPS A, BLEY F, et al. Influence of alloy composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys[J]. Acta Materialia, 2010, 58(1): 248-260. doi: 10.1016/j.actamat.2009.09.003
    [42]
    POURNAZARI S, DEEN K M, MAIJER D M, et al. Effect of retrogression and re-aging (RRA) heat treatment on the corrosion behavior of B206 aluminum-copper casting alloy[J]. Materials and Corrosion, 2018, 69(8): 998-1015. doi: 10.1002/maco.201709925
    [43]
    NING A L, LIU Z Y, FENG C, et al. Analysis on the behavior of exceeding peak aging strength of aluminium alloy at condition of retrogression and reaging[J]. Acta Metallurgica Sinica (in Chinese), 2006, 42(12): 1253-1258.
    [44]
    FENG C, LIU Z Y, NING A L, et al. Retrogression and re-aging treatment of Al-9.99%Zn-1.72%Cu-2.5%Mg-0.13%Zr aluminum alloy[J]. Transanctions of Nonferrous Metals Society of China, 2006, 16(5): 1163-1170. doi: 10.1016/S1003-6326(06)60395-6
    [45]
    YAO N G, WARIKH B A R M, ZOLKEPLI B, et al. Effect of retrogression medium to the mechanical properties of aluminum alloy 7075[J]. Applied Mechanics and Materials, 2012, 165: 6-11. doi: 10.4028/www.scientific.net/AMM.165.6
    [46]
    WANG D, NI D R, MA Z Y. Effect of pre-strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy[J]. Materials Science and Engineering A, 2008, 494: 360-366. doi: 10.1016/j.msea.2008.04.023
    [47]
    WOLVERTON C. Crystal structure and stability of complex precipitate phases in Al-Cu-Mg-(Si) and Al-Zn-Mg alloys[J]. Acta Meterialia, 2001, 49(16): 3129-3142. doi: 10.1016/S1359-6454(01)00229-4
    [48]
    WLOKA J, HACK T, VIRTANEN S. Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys[J]. Corrosion Science, 2007 49(3): 1437-1449. doi: 10.1016/j.corsci.2006.06.033
    [49]
    WANG Y C, CAO L F, WU X D, et al. Effect of retrogression treatments on microstructure, hardness and corrosion behaviors of aluminum alloy 7085[J]. Journal of Alloys and Compounds, 2020, 814: 152264. doi: 10.1016/j.jallcom.2019.152264
    [50]
    REN J, WANG R C, PENG C Q, et al. Effect of repetitious retrogression and re-aging treatment on the microstructure, strength and corrosion behavior of powder hot-extruded 7055 Al alloy[J]. Materials Characterization, 2020, 162: 110190. doi: 10.1016/j.matchar.2020.110190
    [51]
    LIN L H, LIU Z Y, LI Y, et al. Effects of severe cold rolling on exfoliation corrosion behavior of Al-Zn-Mg-Cu-Cr alloy[J]. Journal of Materials Engineering and Performance, 2012(21): 1070-1075.
    [52]
    ZER G, KAYA I, KARAASLAN A. Effects of retrogression and reaging heat treatment on the microstructure, exfoliation corrosion, electrical conductivity, and mechanical properties of AA7050[J]. Materials and Corrosion, 2019, 70(10): 1788-1797. doi: 10.1002/maco.201910887
    [53]
    CHEN S, CHEN K, PENG G, et al. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy[J]. Materials and Design, 2012, 35: 93-98. doi: 10.1016/j.matdes.2011.09.033
    [54]
    HE Y L, WANG X M, HU J, et al. Effect of Cu content on exfoliation corrosion and electrochemical corrosion of A7N01 aluminum alloy in EXCO solution[J]. International Journal of Modern Physics B, 2017, 31: 1744005. doi: 10.1142/S0217979217440052
    [55]
    LIU Y, LI W, JIANG D. The effect of pre-ageing on the microstructure and properties of 7050 alloy[J]. Journal of Materials Research, 2015, 30(24): 3803-3810. doi: 10.1557/jmr.2015.372
    [56]
    SU R M, QU Y D, YOU J Y. Effect of pre-aging on stress corrosion cracking of spray-formed 7075 alloy in retrogression and re-aging[J]. Journal of Materials Engineering and Performance, 2015, 24(11): 4328-4332. doi: 10.1007/s11665-015-1728-2
    [57]
    宋伟苑, 林高用, 李琪. 人工时效前停放时间对7055铝合金挤压管显微组织与性能的影响[J]. 有色金属科学与工程, 2018, 9(5): 37-42. doi: 10.13264/j.cnki.ysjskx.2018.05.007
    [58]
    REN J, WANG R C, PENG C Q, et al. Effect of repetitious retrogression and re-aging treatment on the microstructure, strength and corrosion behavior of powder hot-extruded 7055 Al alloy[J]. Materials Characterization, 2020, 162: 110190. doi: 10.1016/j.matchar.2020.110190
    [59]
    PENG G S, CHEN K H, CHEN S Y, et al. Influence of dual-RRA temper on the exfoliation corrosion and electrochemical behavior of Al-Zn-Mg-Cu alloy[J]. Materials and Corrosion, 2014, 64(4): 284-289.
    [60]
    SU R M, QU Y D, YOU J H. Study on a new retrogression and re-aging treatment of spray formed Al-Zn-Mg-Cu alloy[J]. Journal of Materials Research, 2016, 31(5): 573-579. doi: 10.1557/jmr.2016.44
    [61]
    OZER G, KARAASLAM A. Properties of AA7075 aluminum alloy in aging and retrogression and reaging process[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(11): 2357-2362. doi: 10.1016/S1003-6326(17)60261-9
    [62]
    RANGANATHA R, KUMAR V A, NANDI V S, et al. Multi-stage heat treatment of aluminum alloy AA7049[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6): 1570-1575. doi: 10.1016/S1003-6326(13)62632-1
    [63]
    王胜玉, 肖柱, 王正安, 等. 工业化制备7050铝合金厚板显微组织与力学性能[J]. 有色金属科学与工程, 2017, 8(3): 48-53. doi: 10.13264/j.cnki.ysjskx.2017.03.008
    [64]
    XU D, BIRBILIS N, ROMETSCH P. The effect of pre-ageing temperature and retrogression heating rate on the strength and corrosion behaviour of AA7150[J]. Corrosion Science, 2012, 54: 17-25. doi: 10.1016/j.corsci.2011.08.042
    [65]
    AZARNIYA A, TAHERI A K, TAHERI K K. Recent advances in ageing of 7xxx seriesaluminum aloys: aphysical metallurgy perspective[J]. Journal of Alloys and Compounds, 2019, 781: 945-983. doi: 10.1016/j.jallcom.2018.11.286
    [66]
    曲迎东, 苏睿明, 唐才宇, 等. 喷射成形7075铝合金欠时效回归再时效热处理[J]. 特种铸造及有色合金, 2014, 34(5): 463-466. https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201405006.htm
    [67]
    张新明, 刘胜胆, 游江海, 等. 时效对7055铝合金淬火敏感效应的影响[J]. 中国有色金属学报, 2007, 17(2): 260-264. doi: 10.3321/j.issn:1004-0609.2007.02.013
    [68]
    冯迪, 张新明. 预时效温度及回归加热速率对7055铝合金组织及性能的影响[J]. 中国有色金属学报, 2014, 24(5): 1141-1150. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201405005.htm
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]QI Zhaoming, XU Huaben, LE Shuncong, HUANG Hui, GUO Chengjun, XIAO Xiangpeng, YANG Bin. Effect of rare earth lanthanum on microstructure and properties of Cu-15Ni-8Sn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 569-579. DOI: 10.13264/j.cnki.ysjskx.2023.04.016
    [3]ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012
    [4]XIE Fanghao, LI Jianan, DENG Shenghua, LI Weirong. The microstructure and mechanical properties of selective laser melted Al-Zn-Mg-Sc alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 61-69. DOI: 10.13264/j.cnki.ysjskx.2022.04.008
    [5]QUAN Yongqi, CHENG Hanming, WANG Herui, ZHAO Yao, LIN Gaoyong. Effects of heat treatment on the microstructure and mechanical properties of die casting AlSi10MnMg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 98-106. DOI: 10.13264/j.cnki.ysjskx.2022.02.014
    [6]ZHANG Wangcheng, LI Qiang, HUANG Cong, ZENG Xianshan. Effects of solid solution time on microstructure and properties of the UNS N10276 welded tube[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 88-92. DOI: 10.13264/j.cnki.ysjskx.2022.02.012
    [7]XIANG Ziqi, SHEN Huiyuan, HE Yang, SHENG Xiaofei, XIAO Zhu. Research on improving the corrosion resistance of conductive CuSn alloy for socket[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 76-82. DOI: 10.13264/j.cnki.ysjskx.2022.01.010
    [8]XIE Weicheng, TAO Li, ZHONG Minglong, LIU Renhui, NI Gang, HU Xianjun, ZHONG Zhenchen. Structure and magnetic properties of TbCu7-type SmCo7-xHfx alloys[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 101-105. DOI: 10.13264/j.cnki.ysjskx.2019.05.016
    [9]YE Qing, FENG Xingyu, ZHAO Hongjin. Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 79-83. DOI: 10.13264/j.cnki.ysjskx.2017.03.013
    [10]HE Fu-ping, LIU Feng, LI Jian-yun, ZHANG Jing-en, WANG Zhi-xiang. The effects of solution process and aging on Al-Mg-Si-Cu alloy's microstructure and properties[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 44-48. DOI: 10.13264/j.cnki.ysjskx.2013.01.013

Catalog

    Article Metrics

    Article views (213) PDF downloads (17) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return