Citation: | MA Siyi, ZHANG Weijian, SU Ruiming, LI Guanglong, QU Yingdong, LI Rongde. Research status of regression and reaging on 7xxx series aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 38-50. DOI: 10.13264/j.cnki.ysjskx.2022.02.006 |
[1] |
杨少华, 刘增威, 林明, 等. 7075铝合金在不同pH值NaCl溶液中的腐蚀行为[J]. 有色金属科学与工程, 2017, 8(4): 7-11. doi: 10.13264/j.cnki.ysjskx.2017.04.002
|
[2] |
PANG J, LIU F, LIU J, et al. Friction stir processing of aluminium alloy AA7075: microstructure, surface chemistry and corrosion resistance[J]. Corrosion Science, 2016, 106: 217-228. doi: 10.1016/j.corsci.2016.02.006
|
[3] |
黄晶明, 王昭文, 刘增威, 等. 采用SECM分析7075铝合金的局部腐蚀行为[J]. 有色金属科学与工程, 2019, 10(3): 14-20. doi: 10.13264/j.cnki.ysjskx.2019.03.003
|
[4] |
LI H, CAO F, GUO S, et al. Effects of Mg and Cu on microstructures and properties of spray-deposited Al-Zn-Mg-Cu alloys[J]. Journal of Alloys and Compounds, 2017, 719: 89-96. doi: 10.1016/j.jallcom.2017.05.101
|
[5] |
CAO C, ZHANG D, WANG X, et al. Effects of Cu addition on the precipitation hardening response and intergranular corrosion of Al-5.2Mg-2.0Zn (wt. %) alloy[J]. Materials Characterization, 2016, 122: 177-182. doi: 10.1016/j.matchar.2016.11.004
|
[6] |
FANG H, CHAO H, CHEN K. Effect of recrystallization on intergranular fracture and corrosion of Al-Zn-Mg-Cu-Zr alloy[J]. Journal of Alloys and Compounds, 2015, 622: 166-173. doi: 10.1016/j.jallcom.2014.10.044
|
[7] |
NANDANA M S, BHAT K U, MANJUNATHA C M. Influence of retrogression and re-ageing heat treatment on the fatigue crack growth behavior of 7010 aluminum alloy[J]. Procedia Structural Integrity, 2019, 14: 314-321. doi: 10.1016/j.prostr.2019.05.039
|
[8] |
王井井, 黄元春, 刘宇, 等. 时效工艺对Al-Zn-Mg-Cu-Zr-Er铝合金组织与耐腐蚀性影响[J]. 有色金属科学与工程, 2018, 9(2): 47-55. doi: 10.13264/j.cnki.ysjskx.2018.02.009
|
[9] |
WINDENER C A, BURFORD D A, KUMAR B, et al. Evaluation of post-weld heat treatments to restore the corrosion resistance of friction stir welded aluminum alloy 7075-T73 vs. 7075-T6[J]. Materials Science Forum, 2007, 539-543: 3781-3788.
|
[10] |
冯迪, 张新明, 刘胜胆, 等. 预时效温度及回归加热速率对7150铝合金显微组织及性能的影响[J]. 中国有色金属学报, 2013, 23(5): 1173-1181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201305000.htm
|
[11] |
韩小磊, 熊柏青, 张永安, 等. 欠时效态7150合金的高温回归时效行为[J]. 中国有色金属学报, 2011, 21(1): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201101009.htm
|
[12] |
张新明, 李鹏辉, 刘胜胆, 等. 回归时间对7050铝合金晶间腐蚀性能的影响[J]. 中国有色金属学报, 2008, 18(10): 1795-1801. doi: 10.3321/j.issn:1004-0609.2008.10.008
|
[13] |
KOMISAROV V, TALIAMKER M, CINA B. Effect of retrogression and reaging on the precipitates in an 8090 Al-Li alloy[J]. Materials Sciemce amd Engineering A, 1998, 242(1/2): 39-49.
|
[14] |
ARAN A. Optimization of the strength and intergranular corrosion properties of the 7075-Al alloy by retrogression and reaging[J]. Zeitschrift Fur Metallkde, 1989, 80(3): 170-172.
|
[15] |
URAL K. Study of optimization of heat-treatment conditions in retrogression and reaging treatment of 7075-T6 aluminum alloy[J]. Journal of Materials Science Letter, 1994, 13(5): 383-340. doi: 10.1007/BF00420806
|
[16] |
冯春, 刘志义, 宁爱林, 等. 超高强铝合金RRA热处理工艺的研究进展[J]. 材料导报, 2006, 20(4): 98-101. doi: 10.3321/j.issn:1005-023X.2006.04.027
|
[17] |
ÖZER G, KISASOZ A, KARAASLAN A. Investigation of the relationship between intergranular corrosion and retrogression and reaging in the AA6063[J]. Materials and Corrosion, 2019, 70(12): 2256-2265. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201507024.htm
|
[18] |
REDA Y, ABDEL-KARIM R, ELMAHALLAWI I. Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging[J]. Materials Science and Engineering A, 2008, 485: 468-475. doi: 10.1016/j.msea.2007.08.025
|
[19] |
KRISHNANUNNI S, GUPTA R K, AJITHKUMAR G, et al. Investigation on Effect of Optimized RRA in Strength and SCC Resistance for Aluminium Alloy AA7010[J]. Materials Today: Proceedings, 2020, 27: 2385-2389. doi: 10.1016/j.matpr.2019.09.136
|
[20] |
LUIGGI N, VALERA M D V. Kinetic study of an AA7075 alloy under RRA heat treatment[J]. Journal of Thermal Analysis and Calorimetry, 2017, 130(3): 1885-1902. doi: 10.1007/s10973-017-6683-8
|
[21] |
李晨, 李志辉, 黄树晖, 等. 7055铝合金多道次热变形及固溶处理中的组织演变[J]. 材料热处理学报, 2015, 36(12): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201512010.htm
|
[22] |
李国锋, 张新明. 回归冷却速率对7050铝合金力学性能及晶间腐蚀抗力的影响[J]. 中国有色金属学报, 2013, 23(5): 1234-1240. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201305008.htm
|
[23] |
JIANG J T, XIAO W Q, YANG L, et al. Ageing behavior and stress corrosion cracking resistance of a non-isothermally aged Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering A, 2014, 605: 167-175. doi: 10.1016/j.msea.2014.03.023
|
[24] |
LIU Y, JIANG D M, LI B Q, et al. Effect of cooling aging on microstructure and mechanical properties of an Al-Zn-Mg-Cu alloy[J]. Materials and Design, 2014, 57: 79-86. doi: 10.1016/j.matdes.2013.12.024
|
[25] |
LIU Y, JIANG D M, LIB Q, et al. Heating aging behavior of Al-8.35Zn-2.5Mg-2.25Cu alloy[J]. Materials and Design, 2014, 60: 116-124. doi: 10.1016/j.matdes.2014.03.060
|
[26] |
PENG X Y, GUO Q, LIANG X P, et al. Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering A, 2007, 688: 146-154.
|
[27] |
LIU Y. Influence of repetitious non-isothermal aging on microstructure and strength of Al-Zn-Mg-Cu alloy[J]. Journal of Alloy and Compounds, 2016, 689: 632-640. doi: 10.1016/j.jallcom.2016.08.017
|
[28] |
SU R M, QU Y D, LI R X, et al. Study of ageing treatment on spray forming Al-Zn-Mg-Cu alloy[J]. Applied Mechanics and Materials, 2012, 217/218/219: 1835-1838.
|
[29] |
OLIVEIRA A F, BARROS M C, CARDOSO K R, et al. The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminium alloys[J]. Materials Science and Engineering A, 2004, 379(1/2): 321-326.
|
[30] |
曾渝, 尹志民, 朱远志, 等. RRA处理对超高强铝合金微观组织与性能的影响[J]. 中国有色金属学报, 2004, 14(7): 1188-1194. doi: 10.3321/j.issn:1004-0609.2004.07.024
|
[31] |
LIN J C, LIAO H L, JEHNG W D, et al. Effect of heat treatments on the tensile strength and SCC-resistance of AA7050 in an alkaline saline solution[J]. Corrosion Science, 2006, 48(10): 3139-3156. doi: 10.1016/j.corsci.2005.11.009
|
[32] |
YANG W C, JI S X, ZHANG Q, et al. Investigation of mechanical and corrosion properties of an Al-Zn-Mg-Cu alloy under various ageing conditions and interface analysis of η' precipitate[J]. Materials and Design, 2015, 85: 752-761. doi: 10.1016/j.matdes.2015.06.183
|
[33] |
韩念梅, 张新明, 刘胜胆, 等. 回归再时效对7050铝合金强度和断裂韧性的影响[J]. 中国有色金属学报, 2012, 22(7): 1871-1882. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201207005.htm
|
[34] |
NANDANA M S, BHAT K U, MANJUNATHA C M. Improved fatigue crack Growth resistance by retrogression and re-ageing heat treatment in 7010 aluminum alloy[J]. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42(3): 719-731. doi: 10.1111/ffe.12946
|
[35] |
CHEN X, LIU Z Y, LIN M, et al. Enhanced fatigue crack propagation resistance in an Al-Zn-Mg-Cu alloy by retrogression and reaging treatment[J]. Journal of Materials Engineering and Performance, 2012 (21): 2345-2353.
|
[36] |
REDA Y, ABDEL-KARIM R, ELMAHALLAWI I. Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging[J]. Materials Science and Engineering A, 2008, 485: 468-475. doi: 10.1016/j.msea.2007.08.025
|
[37] |
SU R M, QU Y D, LI R D. Effect of aging treatments on the mechanica andcorrosive behaviors of spray-formed 7075 alloy[J]. Journal of Materials Engineering and Performance, 2014, 23(11): 3842-3848. doi: 10.1007/s11665-014-1186-2
|
[38] |
MARLAUD T, DESCHAMPS A, BLEY F, et al. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu alloy[J]. Acta Mater, 2010, 58: 4814-4826. doi: 10.1016/j.actamat.2010.05.017
|
[39] |
LI J F, BIRBILIS N, LI C X, et al. Influence of retrogression temperature and time on the mechanical properties and exfoliation corrosion behavior of aluminium alloy AA7150[J]. Materials Characterization, 2009, 60: 1334-1341. doi: 10.1016/j.matchar.2009.06.007
|
[40] |
ZHOU L, CHEN K H, CHEN S Y, et al. Correlation between stress corrosion cracking resistance and grain-boundary precipitates of a new generation high Zn-containing 7056 aluminum alloy by non-isothermal aging and re-aging heat treatment[J]. Journal of Alloys and Compounds, 2020, 850: 156717.
|
[41] |
MARLAUD T, DESCHAMPS A, BLEY F, et al. Influence of alloy composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys[J]. Acta Materialia, 2010, 58(1): 248-260. doi: 10.1016/j.actamat.2009.09.003
|
[42] |
POURNAZARI S, DEEN K M, MAIJER D M, et al. Effect of retrogression and re-aging (RRA) heat treatment on the corrosion behavior of B206 aluminum-copper casting alloy[J]. Materials and Corrosion, 2018, 69(8): 998-1015. doi: 10.1002/maco.201709925
|
[43] |
NING A L, LIU Z Y, FENG C, et al. Analysis on the behavior of exceeding peak aging strength of aluminium alloy at condition of retrogression and reaging[J]. Acta Metallurgica Sinica (in Chinese), 2006, 42(12): 1253-1258.
|
[44] |
FENG C, LIU Z Y, NING A L, et al. Retrogression and re-aging treatment of Al-9.99%Zn-1.72%Cu-2.5%Mg-0.13%Zr aluminum alloy[J]. Transanctions of Nonferrous Metals Society of China, 2006, 16(5): 1163-1170. doi: 10.1016/S1003-6326(06)60395-6
|
[45] |
YAO N G, WARIKH B A R M, ZOLKEPLI B, et al. Effect of retrogression medium to the mechanical properties of aluminum alloy 7075[J]. Applied Mechanics and Materials, 2012, 165: 6-11. doi: 10.4028/www.scientific.net/AMM.165.6
|
[46] |
WANG D, NI D R, MA Z Y. Effect of pre-strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy[J]. Materials Science and Engineering A, 2008, 494: 360-366. doi: 10.1016/j.msea.2008.04.023
|
[47] |
WOLVERTON C. Crystal structure and stability of complex precipitate phases in Al-Cu-Mg-(Si) and Al-Zn-Mg alloys[J]. Acta Meterialia, 2001, 49(16): 3129-3142. doi: 10.1016/S1359-6454(01)00229-4
|
[48] |
WLOKA J, HACK T, VIRTANEN S. Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys[J]. Corrosion Science, 2007 49(3): 1437-1449. doi: 10.1016/j.corsci.2006.06.033
|
[49] |
WANG Y C, CAO L F, WU X D, et al. Effect of retrogression treatments on microstructure, hardness and corrosion behaviors of aluminum alloy 7085[J]. Journal of Alloys and Compounds, 2020, 814: 152264. doi: 10.1016/j.jallcom.2019.152264
|
[50] |
REN J, WANG R C, PENG C Q, et al. Effect of repetitious retrogression and re-aging treatment on the microstructure, strength and corrosion behavior of powder hot-extruded 7055 Al alloy[J]. Materials Characterization, 2020, 162: 110190. doi: 10.1016/j.matchar.2020.110190
|
[51] |
LIN L H, LIU Z Y, LI Y, et al. Effects of severe cold rolling on exfoliation corrosion behavior of Al-Zn-Mg-Cu-Cr alloy[J]. Journal of Materials Engineering and Performance, 2012(21): 1070-1075.
|
[52] |
ZER G, KAYA I, KARAASLAN A. Effects of retrogression and reaging heat treatment on the microstructure, exfoliation corrosion, electrical conductivity, and mechanical properties of AA7050[J]. Materials and Corrosion, 2019, 70(10): 1788-1797. doi: 10.1002/maco.201910887
|
[53] |
CHEN S, CHEN K, PENG G, et al. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy[J]. Materials and Design, 2012, 35: 93-98. doi: 10.1016/j.matdes.2011.09.033
|
[54] |
HE Y L, WANG X M, HU J, et al. Effect of Cu content on exfoliation corrosion and electrochemical corrosion of A7N01 aluminum alloy in EXCO solution[J]. International Journal of Modern Physics B, 2017, 31: 1744005. doi: 10.1142/S0217979217440052
|
[55] |
LIU Y, LI W, JIANG D. The effect of pre-ageing on the microstructure and properties of 7050 alloy[J]. Journal of Materials Research, 2015, 30(24): 3803-3810. doi: 10.1557/jmr.2015.372
|
[56] |
SU R M, QU Y D, YOU J Y. Effect of pre-aging on stress corrosion cracking of spray-formed 7075 alloy in retrogression and re-aging[J]. Journal of Materials Engineering and Performance, 2015, 24(11): 4328-4332. doi: 10.1007/s11665-015-1728-2
|
[57] |
宋伟苑, 林高用, 李琪. 人工时效前停放时间对7055铝合金挤压管显微组织与性能的影响[J]. 有色金属科学与工程, 2018, 9(5): 37-42. doi: 10.13264/j.cnki.ysjskx.2018.05.007
|
[58] |
REN J, WANG R C, PENG C Q, et al. Effect of repetitious retrogression and re-aging treatment on the microstructure, strength and corrosion behavior of powder hot-extruded 7055 Al alloy[J]. Materials Characterization, 2020, 162: 110190. doi: 10.1016/j.matchar.2020.110190
|
[59] |
PENG G S, CHEN K H, CHEN S Y, et al. Influence of dual-RRA temper on the exfoliation corrosion and electrochemical behavior of Al-Zn-Mg-Cu alloy[J]. Materials and Corrosion, 2014, 64(4): 284-289.
|
[60] |
SU R M, QU Y D, YOU J H. Study on a new retrogression and re-aging treatment of spray formed Al-Zn-Mg-Cu alloy[J]. Journal of Materials Research, 2016, 31(5): 573-579. doi: 10.1557/jmr.2016.44
|
[61] |
OZER G, KARAASLAM A. Properties of AA7075 aluminum alloy in aging and retrogression and reaging process[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(11): 2357-2362. doi: 10.1016/S1003-6326(17)60261-9
|
[62] |
RANGANATHA R, KUMAR V A, NANDI V S, et al. Multi-stage heat treatment of aluminum alloy AA7049[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6): 1570-1575. doi: 10.1016/S1003-6326(13)62632-1
|
[63] |
王胜玉, 肖柱, 王正安, 等. 工业化制备7050铝合金厚板显微组织与力学性能[J]. 有色金属科学与工程, 2017, 8(3): 48-53. doi: 10.13264/j.cnki.ysjskx.2017.03.008
|
[64] |
XU D, BIRBILIS N, ROMETSCH P. The effect of pre-ageing temperature and retrogression heating rate on the strength and corrosion behaviour of AA7150[J]. Corrosion Science, 2012, 54: 17-25. doi: 10.1016/j.corsci.2011.08.042
|
[65] |
AZARNIYA A, TAHERI A K, TAHERI K K. Recent advances in ageing of 7xxx seriesaluminum aloys: aphysical metallurgy perspective[J]. Journal of Alloys and Compounds, 2019, 781: 945-983. doi: 10.1016/j.jallcom.2018.11.286
|
[66] |
曲迎东, 苏睿明, 唐才宇, 等. 喷射成形7075铝合金欠时效回归再时效热处理[J]. 特种铸造及有色合金, 2014, 34(5): 463-466. https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201405006.htm
|
[67] |
张新明, 刘胜胆, 游江海, 等. 时效对7055铝合金淬火敏感效应的影响[J]. 中国有色金属学报, 2007, 17(2): 260-264. doi: 10.3321/j.issn:1004-0609.2007.02.013
|
[68] |
冯迪, 张新明. 预时效温度及回归加热速率对7055铝合金组织及性能的影响[J]. 中国有色金属学报, 2014, 24(5): 1141-1150. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201405005.htm
|
[1] | FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010 |
[2] | QI Zhaoming, XU Huaben, LE Shuncong, HUANG Hui, GUO Chengjun, XIAO Xiangpeng, YANG Bin. Effect of rare earth lanthanum on microstructure and properties of Cu-15Ni-8Sn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 569-579. DOI: 10.13264/j.cnki.ysjskx.2023.04.016 |
[3] | ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012 |
[4] | XIE Fanghao, LI Jianan, DENG Shenghua, LI Weirong. The microstructure and mechanical properties of selective laser melted Al-Zn-Mg-Sc alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 61-69. DOI: 10.13264/j.cnki.ysjskx.2022.04.008 |
[5] | QUAN Yongqi, CHENG Hanming, WANG Herui, ZHAO Yao, LIN Gaoyong. Effects of heat treatment on the microstructure and mechanical properties of die casting AlSi10MnMg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 98-106. DOI: 10.13264/j.cnki.ysjskx.2022.02.014 |
[6] | ZHANG Wangcheng, LI Qiang, HUANG Cong, ZENG Xianshan. Effects of solid solution time on microstructure and properties of the UNS N10276 welded tube[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 88-92. DOI: 10.13264/j.cnki.ysjskx.2022.02.012 |
[7] | XIANG Ziqi, SHEN Huiyuan, HE Yang, SHENG Xiaofei, XIAO Zhu. Research on improving the corrosion resistance of conductive CuSn alloy for socket[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 76-82. DOI: 10.13264/j.cnki.ysjskx.2022.01.010 |
[8] | XIE Weicheng, TAO Li, ZHONG Minglong, LIU Renhui, NI Gang, HU Xianjun, ZHONG Zhenchen. Structure and magnetic properties of TbCu7-type SmCo7-xHfx alloys[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 101-105. DOI: 10.13264/j.cnki.ysjskx.2019.05.016 |
[9] | YE Qing, FENG Xingyu, ZHAO Hongjin. Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 79-83. DOI: 10.13264/j.cnki.ysjskx.2017.03.013 |
[10] | HE Fu-ping, LIU Feng, LI Jian-yun, ZHANG Jing-en, WANG Zhi-xiang. The effects of solution process and aging on Al-Mg-Si-Cu alloy's microstructure and properties[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 44-48. DOI: 10.13264/j.cnki.ysjskx.2013.01.013 |