Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WU Jianhui, CHEN Xiaosong, CHEN Silei, WANG Yimin, YAN Run. Recovery of copper from copper manganese residue by acid leaching and selective sulfide precipitation[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 70-76. DOI: 10.13264/j.cnki.ysjskx.2021.03.009
Citation: WU Jianhui, CHEN Xiaosong, CHEN Silei, WANG Yimin, YAN Run. Recovery of copper from copper manganese residue by acid leaching and selective sulfide precipitation[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 70-76. DOI: 10.13264/j.cnki.ysjskx.2021.03.009

Recovery of copper from copper manganese residue by acid leaching and selective sulfide precipitation

More Information
  • Received Date: January 31, 2021
  • Published Date: June 29, 2021
  • In this paper, a systematic study of H2SO4 leaching of copper manganese slag and Na2S2O3 selective copper precipitation in acid leaching solution was conducted. The influencing factors of these two processes were explored by single factor experiment. The results showed that the optimal conditions for sulfuric acid leaching of copper manganese slag were H2SO4 dosage of 200 g/L, liquid to solid of (mL/g) 7∶1, reaction temperature of 80 ℃ and reaction time of 2 h. Under these conditions, the leaching rates of copper, cobalt, zinc and manganese were 99.81%, 99.54%, 99.07% and 24.10% respectively, and the main phase of leaching residue was MnO2. The optimal conditions for selective copper precipitation in acid leaching solution were Na2S2O3 dosage multiple of 2.0 and reaction time of 90 min, reaction temperature of 70 ℃. The results indicated that the precipitation rates of copper, cobalt, zinc and manganese were 99.99%, 0.26%, 0.34% and 0.29% respectively, and the main phase of copper slag was CuS. After the above process, the recovery efficiency of copper could reach 99.80%. The leaching residue and copper precipitation residue could be directly used in industrial production, and the liquid after copper precipitation could continue to separate zinc, cobalt and other metal elements.
  • [1]
    刘超, 陈甲斌. 全球钴资源供需形势分析[J]. 国土资源情报, 2020(10): 27-33. doi: 10.3969/j.issn.1674-3709.2020.10.005
    [2]
    卢宜冠, 郝波, 孙凯, 等. 钴金属资源概况与资源利用情况分析[J]. 地质调查与研究, 2020, 43(1): 72-80. doi: 10.3969/j.issn.1672-4135.2020.01.008
    [3]
    王静静, 周康根, 岳楠, 等. 氨法从氯化铜锰锌钴废液中选择性分离锰[J]. 有色金属科学与工程, 2015, 6(4): 16-20. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201504004
    [4]
    罗能荣, 王鹃. 从氯化铜锰液中回收有价金属的生产实践[J]. 有色冶金节能, 2017, 33(2): 51-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YJJN201702015.htm
    [5]
    兰州金川新材料科技股份有限公司. 一种从碳酸铜锰钴钙锌混合物中分离铜钴锰的方法: CN201510635739.4[P]. 2016-01-27.
    [6]
    苏轶娜. 我国重要矿产资源供需形势研究[J]. 中国国土资源经济, 2019, 32(7): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDKJ201907009.htm
    [7]
    郭学益, 田庆华, 刘咏, 等. 有色金属资源循环研究应用进展[J]. 中国有色金属学报, 2019, 29(9): 1859-1901. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201909006.htm
    [8]
    赖丹, 杨华, 罗翔. 经济政策不确定性对经营效率的影响——以有色金属行业上市公司为例[J]. 有色金属科学与工程, 2020, 11(4): 98-105. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=202004015
    [9]
    樊有琪, 蔡兵, 杜春云. 铜烟尘提取铜和锌的湿法工艺探索[J]. 中国有色冶金, 2016, 45(2): 59-62. doi: 10.3969/j.issn.1672-6103.2016.02.015
    [10]
    吴莹, 方登志, 于艳杰, 等. 烟道灰中铜锌锰的分离与回收[J]. 中国锰业, 2017, 35(2): 123-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201702010.htm
    [11]
    黄涛, 陈丽杰, 张喆秋, 等. 离子交换法从氧化铜钴矿加压氨浸液中分离铜钴的研究[J]. 有色金属(冶炼部分), 2018(4): 1-6. doi: 10.3969/j.issn.1007-7545.2018.04.001
    [12]
    彭宇, 肖发新, 孙树臣, 等. 高碱性脉石低品位氧化铜矿提铜研究进展[J]. 有色金属科学与工程, 2020, 11(5): 69-74. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2020050010
    [13]
    谢晓峰, 李磊, 王飞, 等. 铜渣氯化烟尘中铜的湿法回收[J]. 过程工程学报, 2015, 15(3): 424-429. https://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ201503011.htm
    [14]
    张彩霞, 舒庆, 刘若琳, 等. 新型铜萃取剂对十二烷基苯基羧基甲酮肟的合成及其萃铜性能[J]. 有色金属科学与工程, 2017, 8(6): 36-42. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017060006
    [15]
    陈炎, 程洁红. 醛肟萃取剂萃取分离废锂离子电池中的铜[J]. 过程工程学报, 2017, 17(6): 1170-1175. https://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ201706009.htm
    [16]
    宫文宇. 化学沉淀法处理含铜污水工艺分析[J]. 炼油与化工, 2020, 31(2): 71-72. doi: 10.3969/j.issn.1671-4962.2020.02.026
    [17]
    黄万抚, 胡昌顺, 曹明帅, 等. 难处理含铜废水处理技术研究[J]. 应用化工, 2018, 47(10): 2248-2253. doi: 10.3969/j.issn.1671-3206.2018.10.047
    [18]
    LUNA I Z, HILARY L N, CHOWDHURY A M S, et al. Preparation and characterization of copper oxide nanoparticles synthesized via chemical precipitation method[J]. Open Access Library Journal, 2015, 2(3): 1-8. http://www.researchgate.net/publication/276499509_Preparation_and_Characterization_of_Copper_Oxide_Nanoparticles_Synthesized_via_Chemical_Precipitation_Method
    [19]
    TOKUDA H, KUCHAR D, MIHARA N, et al. Study on reaction kinetics and selective precipitation of Cu, Zn, Ni and Sn with H2S in single-metal and multi-metal systems[J]. Chemosphere, 2008, 73(9): 1448-1452. doi: 10.1016/j.chemosphere.2008.07.073
    [20]
    柴立元, 王海棠, 尤翔宇, 等. M(Ⅱ)-S-H2O体系的热力学平衡[J]. 有色金属科学与工程, 2012, 3(5): 8-13. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201205002
    [21]
    李琛, 韩俊伟, 刘维, 等. 硫化沉淀法回收锌浸出液中的铜[J]. 矿冶工程, 2019, 39(1): 102-105. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201901028.htm
    [22]
    李志仁, 许万祥, 朱军, 等. 从高酸湿法炼锌渣浸出液中分离铁及回收铜、锌实验研究[J]. 湿法冶金, 2013, 32(5): 326-328. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201305023.htm
    [23]
    郝冬冬, 蒋开喜, 王玉芳, 等. 白烟灰浸出液中铜的综合回收[J]. 矿冶, 2019, 28(4): 126-130. doi: 10.3969/j.issn.1005-7854.2019.04.023
    [24]
    武汉大学, 吉林大学. 无机化学(上册)[M]. 北京: 高等教育出版社, 1994.
  • Related Articles

    [1]QIU Yang, HUANG Chengge, TANG Daowen, GUAN Guichao, XU Caiwu. Leaching of Guizhou Carlin-type gold mine with sodium thiosulfate at room temperature[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 22-27. DOI: 10.13264/j.cnki.ysjskx.2021.01.004
    [2]CAO Zhanfang, TAN Jinyong, ZHONG Hong. Electro-oxidation leaching and separation behavior of copper-lead sulfide minerals in acetic acid-sodium acetate system[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 1-6. DOI: 10.13264/j.cnki.ysjskx.2020.05.001
    [3]GUO Xueyi, WANG Songsong, WANG Qinmeng, TIAN Qinghua. Development and application of oxygen bottom blowing copper smelting simulation software SKSSIM[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 1-6. DOI: 10.13264/j.cnki.ysjskx.2017.04.001
    [4]TU Wentao, JING Qingxiu. Sulfuric acid leaching of the high arsenic basic copper carbonate[J]. Nonferrous Metals Science and Engineering, 2015, 6(4): 31-36. DOI: 10.13264/j.cnki.ysjskx.2015.04.007
    [5]HUANG Jiaquan, WANG Yaping, WANG Huatai, PENG Tangjian, WU Xueling, ZHOU H ongbo, ZENG Weimin. Sulphuric acid leaching of Yulong oxide copper ore based on orthogonal design test[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 123-129. DOI: 10.13264/j.cnki.ysjskx.2014.05.023
    [6]CAO Xi-min. On the Preparability of a Certain Copper-Sulphur Ore[J]. Nonferrous Metals Science and Engineering, 2010, 1(02): 56-59. DOI: 10.13264/j.cnki.ysjskx.2010.06.006
    [7]LI Zhi-jian. Extract Nickel Sulfate from the Liquid Waste of Copper Electrolysis[J]. Nonferrous Metals Science and Engineering, 2007, 21(4): 24-26.
    [8]DAI Jiang-hong, ZENG Qing-yun, CHEN Qing-gen. Study on Technique of Microwave Extraction for Producing Copper Sulfate from Leaching Solution of Low Grade Copper Ores[J]. Nonferrous Metals Science and Engineering, 2006, 20(2): 23-25.
    [9]XIE Bing, ZHANG Shao-hua, XIE He-yin. The Effect of Rare Earth on Copper and Copper Based Alloys[J]. Nonferrous Metals Science and Engineering, 2004, 18(3): 31-33.
    [10]XIA Hua-long. The characteristics of copper ore and grade of copper concentrate in Dexing copper mine[J]. Nonferrous Metals Science and Engineering, 2001, 15(1): 20-23.
  • Cited by

    Periodical cited type(5)

    1. 郭顺,倪豪豪,黄豪,常亚南,鞠玉琳. 淬火-回火工艺对高速翻转犁用28MnB5铁基合金的组织及性能影响. 稀有金属. 2024(02): 187-195 .
    2. 孙红智,单庆林,张源,任树洋,田亚强,郭晓雨,郑小平,陈连生. 汽车大梁钢成型开裂的研究现状. 四川冶金. 2024(03): 7-11 .
    3. 臧若愚,李晶,黄飞. 稀土Ce对高强工程机械用钢夹杂物和高温塑性的影响. 有色金属科学与工程. 2024(03): 449-456 . 本站查看
    4. 史根豪,王恩睿,张志强,孙毅,王青云,于强,王倩. 停冷温度对含Nb高强耐候钢组织性能的影响. 钢铁. 2024(08): 117-124 .
    5. 杨建伟,杨钦,吴静,郑亚旭,汪云辉. Nb-Ti高强钢中第二相粒子固溶行为及奥氏体晶粒长大规律研究. 钢铁钒钛. 2023(05): 139-145 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (167) PDF downloads (10) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return