Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHAO Haibin, QIN Jing, LIU Defu, ZHANG Yinghui, WANG Zhigang. Effect of rare earth Yttrium on the tensile properties of 6.5%Si steel[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 131-140. DOI: 10.13264/j.cnki.ysjskx.2021.01.017
Citation: ZHAO Haibin, QIN Jing, LIU Defu, ZHANG Yinghui, WANG Zhigang. Effect of rare earth Yttrium on the tensile properties of 6.5%Si steel[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 131-140. DOI: 10.13264/j.cnki.ysjskx.2021.01.017

Effect of rare earth Yttrium on the tensile properties of 6.5%Si steel

More Information
  • Received Date: September 10, 2020
  • Published Date: February 27, 2021
  • Fe-6.5wt%Si alloy shows potential for a broad application with excellent soft magnetic properties including high permeability, low iron loss, and near-zero magnetostriction. However, brittle-ordered B2 and DO3 structures hinders its mass production and applications. In this work, the effect of Y element on the tensile properties of Fe-6.5wt%Si alloy at 200~800 ℃ was investigated. A detailed study of the Y element in the microstructure and ordered structure of Fe-6.5wt%Si was carried out by EBSD, EPMA, XRD and TEM. Results showed that Y2O3 and Y2O2S precipitates as the efficient nucleation agents refined the microstructures. Adding Y not only refined the ordered domains, but also reduced the ordered phase contents, ordered degrees, and hardness. The fracture elongation of high silicon steel with 0.03% Y at 200~600 ℃ was higher than that of high silicon steel without Y. The tensile strength of high silicon steel containing 0.03% Y was higher than that of high silicon steel without Y at 200~400 ℃. The grain refinement and ordered degree reduction caused by the addition of rare earth Y in Fe-6.5wt%Si alloy were the important reasons for its improvement in ductility.
  • [1]
    LIANG Y F, WANG S, QI J K, et al. Microstructure and properties of cost-effective Fe-6.5 wt% Si ribbons fabricated by melt-spinning[J]. Scripta Materialia, 2019, 163(2019): 107-110. http://www.sciencedirect.com/science/article/pii/S1359646219300028
    [2]
    OUYANG G Y, CHEN X, LIANG Y F, et al. Review of Fe-6.5?%Si high silicon steel—A promising soft magnetic material for sub-kHz application[J]. Journal of Magnetism and Magnetic Materials, 2019, 481(2019): 234-250. http://www.sciencedirect.com/science/article/pii/S0304885318331330
    [3]
    杨经富, 张迎晖, 秦镜, 等. 成品厚度对高牌号无取向电工钢组织、织构和磁性能的影响[J]. 有色金属科学与工程, 2020, 11(3): 73-79. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=202003010
    [4]
    SHIN J S, BAE J S, KIM H J, et al. Ordering-disordering phenomena and micro-hardness characteristics of B2 phase in Fe-(5-6.5%) Si alloys[J]. Materials Science and Engineering: A, 2005, 407: 282-290. doi: 10.1016/j.msea.2005.07.012
    [5]
    PENG M H, ZHONG Y B, ZHENG T X, et al. 6.5 wt% Si high silicon steel sheets prepared by composite electrodeposition in magnetic field[J]. Journal of Materials Science & Technology, 2018, 34(12): 2492-2497. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=CLKJ201812035
    [6]
    HE X D, LI X, SUN Y. Microstructure and magnetic properties of high silicon electrical steel produced by electron beam physical vapor deposition[J]. Journal of Magnetism and Magnetic Materials, 2008, 320(3/4): 217-221.
    [7]
    TIAN G K, BI X F. Fabrication and magnetic properties of Fe-6.5% Si alloys by magnetron sputtering method[J]. Journal of Alloys and Compounds, 2010, 502(1): 1-4. doi: 10.1016/j.jallcom.2010.02.175
    [8]
    YU H, BI X F. Magnetic and mechanical properties of the gradient FeSi alloys fabricated by magnetron sputtering[J]. Journal of Alloys and Compounds, 2015, 634: 83-86. doi: 10.1016/j.jallcom.2015.01.156
    [9]
    WANG X L, LI H Z, LIU Z Y, et al. Effect of cooling rate on bending behavior of 6.5. % Si electrical steel thin sheets fabricated by strip casting and rolling[J]. Materials Characterization, 2016, 111: 67-74. doi: 10.1016/j.matchar.2015.11.008
    [10]
    LIANG Y F, YE F, LIN J P, et al. Effect of heat treatment on mechanical properties of heavily cold-rolled Fe-6.5% Si alloy sheet[J]. Science China Technological Sciences, 2010, 53(4): 1008-1011. doi: 10.1007/s11431-010-0125-1
    [11]
    ZHANG Z H, WANG W P, FU H D, et al. Effect of quench cooling rate on residual stress, microstructure and mechanical property of an Fe-6.5Si alloy[J]. Materials Science and Engineering: A, 2011, 530: 519-524. doi: 10.1016/j.msea.2011.10.013
    [12]
    MO Y K, ZHANNG Z H, FU H D, et al. Effects of deformation temperature on the microstructure, ordering and mechanical properties of Fe-6.5% Si alloy with columnar grains[J]. Materials Science and Engineering: A, 2014, 594: 111-117. doi: 10.1016/j.msea.2013.11.024
    [13]
    XIE J X, FU H D, ZHANG Z H, et al. Deformation twinning feature and its effects on significant enhancement of tensile ductility in columnar-grained Fe-6.5. %Si alloy at intermediate temperatures[J]. Intermetallics, 2012, 23: 20-26. doi: 10.1016/j.intermet.2011.12.011
    [14]
    FU H D, ZHANG Z H, PAN H J, et al. Warm/cold rolling processes for producing Fe-6.5% Si electrical steel with columnar grains[J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(6): 535-540. doi: 10.1007/s12613-013-0762-z
    [15]
    WANG S, JIANG Y M, LIANG Y F, et al. Magnetic properties and core loss behavior of Fe-6.5. %Si ribbons prepared by melt spinning[J]. Advances in Materials Science and Engineering, 2015, 2015: 1-6. http://www.researchgate.net/publication/276322823_Magnetic_Properties_and_Core_Loss_Behavior_of_Fe-65wtSi_Ribbons_Prepared_by_Melt_Spinning
    [16]
    OUYANG G Y, JENSEN B, TANG W, et al. Effect of wheel speed on magnetic and mechanical properties of melt spun Fe-6.5% Si high silicon steel[J]. AIP Advances, 2018, 056111: 1-6. http://adsabs.harvard.edu/abs/2018AIPA....8e6111O
    [17]
    MAO W M, YANG P. Influence of structure transition on plastic behaviors of iron based ordered alloys[J]. Science China Technological Sciences, 2012, 55(10): 2920-2925. doi: 10.1007/s11431-012-4947-x
    [18]
    KIM K N, PAN L M, LIN J P. The effect of boron content on the processing for Fe-6.5% Si electrical steel sheets[J]. Journal of Magnetism and Magnetic Materials, 2004, 277(3)?: 331-336.
    [19]
    CHEN W S, LIU J, ChENG Z Y, et al. Effect of chromium on microstructure, ordered phase and magnetic properties of Fe-6.5% Si alloy[J]. Materials Today: Proceedings, 2015, 2: 314-318. doi: 10.1016/j.matpr.2015.05.044
    [20]
    YANG K, LIANG Y F, YE F, et al. Texture evolution of Nb microalloyed Fe14Si2 high silicon steel during warm rolling[J]. Acta Metallurgica Sinica, 2013, 49(11): 1411-1415. doi: 10.3724/SP.J.1037.2013.00492
    [21]
    SCHULTE M, STEENTJES S, LEUNING N, et al. Effect of manganese in high silicon alloyed non-oriented electrical steel sheets[J]. Journal of Magnetism and Magnetic Materials, 2019, 477: 372-381. doi: 10.1016/j.jmmm.2018.07.025
    [22]
    KIM K N, PAN L M, LIN J P, et al. The effect of boron content on the processing for Fe-6.5wt% Si electrical steel sheets[J]. Journal of Magnetism & Magnetic Materials, 2004, 277(3): 331-336. http://www.sciencedirect.com/science/article/pii/S0304885303009284
    [23]
    PAN F, ZHANG J, CHEN H, et al. Effects of rare earth metals on steel microstructures[J]. Materials, 2016, 9(6): 417. doi: 10.3390/ma9060417
    [24]
    LI H Z, LIU H T, WANG X L, et al. Effect of cerium on the as-cast microstructure and tensile ductility of the twin-roll casting Fe-6.5 % Si alloy[J]. Materials Letters, 2016, 165: 5-8. doi: 10.1016/j.matlet.2015.11.100
    [25]
    YU X, ZHANG Z H, XIE J X. Effects of rare earth elements doping on ordered structures and ductility improvement of Fe-6.5 % Si alloy[J]. Materials Letters, 2016, 184: 294-297. doi: 10.1016/j.matlet.2016.08.074
    [26]
    YU X, ZHANG Z H, XIE J X. Microstructure, Ordered structure and warm tensile ductility of Fe-6.5% Si alloy with various ce Content[J]. Acta Metallurgica Sinica, 2017, 53(8): 927-936. http://en.cnki.com.cn/Article_en/CJFDTotal-JSXB201708004.htm
    [27]
    GAO X, REN H, LI C, WANG H, et al. First-principles calculations of rare earth (Y, La and Ce) diffusivities in bcc Fe[J]. Journal of Alloys and Compounds, 2016, 663: 316-320. doi: 10.1016/j.jallcom.2015.12.129
    [28]
    GAO X, REN H, WANG H, et al. Activity coefficient and solubility of yttrium in Fe-Y dilute solid solution[J]. Journal of Rare Earths, 2016, 34(11): 1168-1172. doi: 10.1016/S1002-0721(16)60149-7
    [29]
    杨全海, 杨吉春, 丁海峰, 等. 稀土管线钢中夹杂物热力学分析及实验研究[J]. 稀土, 2018, 39: 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201802013.htm
    [30]
    MATSUMURA S, TANAKA Y, KOGA Y. Concurrent ordering and phase separation in the vicinity of the metastable critical point of order-disorder transition in Fe-Si alloys[J]. Materials Science and Engineering: A, 2001, 312(1/2): 284-292. http://www.sciencedirect.com/science/article/pii/S0921509300018748
    [31]
    JUNG H, KIM S B, KIM J B, et al. Effects of anti-phase boundary on the iron loss of grain oriented silicon steel[J]. ISIJ International, 2011, 51(6): 987-990. doi: 10.2355/isijinternational.51.987
    [32]
    QIN J, YUE Y, ZHANG Y H, et al. Comparison between strong η-fiber-oriented high-silicon steel and grain-oriented high-silicon steel on magnetic properties[J]. Journal of Magnetism and Magnetic Materials, 2017, 439: 38-43. doi: 10.1016/j.jmmm.2017.05.006
    [33]
    YU H Y, MING K S, WU H C, et al. Ordering suppression and excellent ductility in soft-magnetic Fe-6.5% Si sheet by Hf addition[J]. Journal of Alloys and Compounds, 2018, 766: 186-193. doi: 10.1016/j.jallcom.2018.06.343
    [34]
    LI H Z, LIU Z Y. Tensile properties of strip casting 6.5% Si steel at elevated temperatures[J]. Materials Science and Engineering: A, 2015, 639: 412-416. doi: 10.1016/j.msea.2015.05.057
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [3]TONG Jing, SU Chong. Study on surface strengthening and mechanical properties of aluminum alloy manipulator of logistics robots[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 84-90. DOI: 10.13264/j.cnki.ysjskx.2022.06.011
    [4]ZHU Fusheng, CHEN Rongchun, YANG Yupeng, LI Chunhong, LIAO Zhijin, LIU Yanping, WANG Zhigang. Effects of mixed rare earth elements on microstructure and tensile properties of HRB400 steel[J]. Nonferrous Metals Science and Engineering, 2021, 12(5): 126-132. DOI: 10.13264/j.cnki.ysjskx.2021.05.016
    [5]SHI Zhenxue, YUE Xiaodai, WANG Zhicheng, ZHAO Jinqian, LIU Shizhong. Effects of Re content on the microstructure and tensile properties of a single crystal superalloy[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 113-118. DOI: 10.13264/j.cnki.ysjskx.2020.04.017
    [6]CHEN Zhao, ZHENG Ying, ZHU Chen, WANG Jianhui, YANG Guanheng, LIN Gaoyong. Effect of pre-stretching on geometric accuracy and mechanical properties of 7075 aluminum alloy plates[J]. Nonferrous Metals Science and Engineering, 2019, 10(6): 40-47. DOI: 10.13264/j.cnki.ysjskx.2019.06.007
    [7]SHI Zhenxue, YANG Wanpeng, LIU Shizhong, WANG Xiaoguang. Effect of long-term aging temperature on the microstructure and tensile properties of a single crystal superalloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 35-39. DOI: 10.13264/j.cnki.ysjskx.2018.04.006
    [8]YE Qing, FENG Xingyu, ZHAO Hongjin. Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 79-83. DOI: 10.13264/j.cnki.ysjskx.2017.03.013
    [9]LIU Zheng, BAI Guangzhu, LUO Haolin. Refining mechanism of rare earth Y on primary phase Mg2Si in-situ Mg2Si/Al composites[J]. Nonferrous Metals Science and Engineering, 2016, 7(1): 28-33. DOI: 10.13264/j.cnki.ysjskx.2016.01.007
    [10]ZHANG Ying-hui, ZHONG Zhi-qiang, CHEN Han. Effects of yttrium on the microstructure and properties of Al-Cu-Mg-Mn alloy[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 32-36. DOI: 10.13264/j.cnki.ysjskx.2012.02.019
  • Cited by

    Periodical cited type(2)

    1. 李民,王继杰,李昊泽,邢炜伟,刘德壮,李奥迪,马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响. 金属学报. 2023(03): 399-412 .
    2. 李昊泽,李民,刘德壮,李奥迪,马颖澈. 钇元素对6.5%Si无取向硅钢组织、高温拉伸及断裂机制的影响. 电工钢. 2022(01): 18-24 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (93) PDF downloads (8) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return