Citation: | CHAI Xiaojun, WANG Minghua, LI Jinqiong, HAN Zhuo, PENG Guanghuai, LIAO Jinsheng, WEN Herui. Preparation and near-infrared luminescence properties of Y2MgTiO6: Mn4+/ Nd3+[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 48-56. DOI: 10.13264/j.cnki.ysjskx.2020.06.007 |
[1] |
YOSHIKAWA K, KAWASAKI H, YOSHIDA W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%[J]. Nature Energy, 2017, 2(5):17032. doi: 10.1038/nenergy.2017.32
|
[2] |
HU J X, ZHANG Y P, LU B, et al. Efficient conversion of broad UV-visible light to near-infrared emission in Mn4+/Yb3+ co-doped CaGdAlO4 phosphors[J]. Journal of Luminescence, 2019, 210: 189-201. doi: 10.1016/j.jlumin.2019.02.036
|
[3] |
ZHAO J, WANG X, LI L, et al. Near-infrared emissions in host sensitized Ba2YV3O11: RE3+ (RE=Nd, Ho, Yb) down-converting phosphors[J]. Ceramics International, 2020, 46(4): 5015-5019. doi: 10.1016/j.ceramint.2019.10.242
|
[4] |
FAN B, CHLIQUE C, MERDRIGNAC-CONANEC O, et al. Near-infrared quantum cutting material Er3+/Yb3+ doped La2O2S with an external quantum yield higher than 100%[J]. The Journal of Physical Chemistry C, 2012, 116(21): 11652-11657. doi: 10.1021/jp3016744
|
[5] |
KARUNAKARAN S K, LOU C G, ARUMUGAM G M, et al. Efficiency improvement of Si solar cells by down-shifting Ce3+-doped and down-conversion Ce3+-Yb3+ co-doped YAG phosphors[J]. Solar Energy, 2019, 188: 45-50. doi: 10.1016/j.solener.2019.05.076
|
[6] |
HO W J, SHEN Y T, LIU J J, et al.Enhancing photovoltaic performance using broadband luminescent down-shifting by combining multiple species of Eu-doped silicate phosphors[J]. Nanomaterials, 2017, 7(10): 340. doi: 10.3390/nano7100340
|
[7] |
PATHAK A A, TALEWAR R A, JOSHI C P, et al.NIR emission and Ce3+-Nd3+ energy transfer in LaCaAl3O7 phosphor prepared by combustion synthesis[J]. Journal of Luminescence, 2016, 179: 350-354. doi: 10.1016/j.jlumin.2016.07.021
|
[8] |
TAWALARE P K, BHATKAR V B, OMANWAR S K, et al. Near-infrared emitting Ca5(PO4)3Cl:Eu2+, Nd3+ phosphor for modification of the solar spectrum[J]. Luminescence, 2018, 33(7): 1288-1293. doi: 10.1002/bio.3548
|
[9] |
TALEWAR R A, MAHAMUDA S, RAO A S, et al. Sensitization of Nd3+ by 4f-5d transition of Ce3+ in Ba2Y(BO3)2Cl phosphor for the prospective NIR applications[J]. Journal of Luminescence, 2018, 202:1-6. doi: 10.1016/j.jlumin.2018.05.035
|
[10] |
YAO L Q, SHAO Q Y, XU X X, et al. Broadband emission of single-phase Ca3Sc2Si3O12:Cr3+/Ln3+ (Ln=Nd, Yb, Ce) phosphors for novel solid-state light sources with visible to near-infrared light output[J]. Ceramics International, 2019, 45(11): 14249-14255. doi: 10.1016/j.ceramint.2019.04.133
|
[11] |
GAO X J, XIA W B, CHEN T J, et al. Conversion of broadband UV-visible light to near infrared emission by Ca14Zn6Al10O35: Mn4+, Nd3+/Yb3+[J]. RSC Advances, 2016, 6(9): 7544-7552. doi: 10.1039/C5RA18479G
|
[12] |
ADACHI S. Photoluminescence spectra and modeling analyses of Mn4+-activated fluoride phosphors: a review[J]. Journal of Luminescence 2018, 197:119-130. doi: 10.1016/j.jlumin.2018.01.016
|
[13] |
LI W, CHEN T J, XIA W B, et al. Near-infrared emission of Yb3+ sensitized by Mn4+ in La2MgTiO6[J]. Journal of Luminescence, 2018, 194:547-550. doi: 10.1016/j.jlumin.2017.04.063
|
[14] |
CHEN Q, LIU S, ZHOU Y, et al. Dual-activator luminescence of RE/TM:Y3Al5O12 (RE=Eu3+, Tb3+, Dy3+; TM=Mn4+, Cr3+) phosphors for self-referencing optical thermometry[J]. Journal of Materials Chemistry C, 2016, 4(38): 9044-9051. doi: 10.1039/C6TC02934E
|
[15] |
LIAO J S, KONG L Y, WANG Q, et al. Sol-gel preparation and near-infrared emission properties o f Yb3+ sensitized by Mn4+ in double-perovskite La2ZnTiO6[J]. Optical Materials, 2018, 84: 82-88. doi: 10.1016/j.optmat.2018.06.055
|
[16] |
LI K, VAN DEUN R. Enhancing the energy transfer from Mn4+ to Yb3+ via a Nd3+ bridge role in Ca3La2W2O12:Mn4+, Nd3+, Yb3+ phosphors for spectral conversion of c-Si solar cells[J]. Dyes and Pigments, 2019, 162: 990-997. doi: 10.1016/j.dyepig.2018.11.030
|
[17] |
LI J Q, LIAO J S, WEN H R, et al. Multiwavelength near infrared downshift and downconversion emission of Tm3+ in double perovskite Y2MgTiO6:Mn4+/Tm3+ phosphors via resonance energy transfer[J]. Journal of Luminescence, 2019, 213: 356-363. doi: 10.1016/j.jlumin.2019.05.038
|
[18] |
CAI P Q, QIN L, CHEN C L, et al. Optical thermometry based on vibration side bands in Y2MgTiO6:Mn4+ Double Perovskite[J]. Inorganic Chemistry, 2018, 57(6): 3073-3081. doi: 10.1021/acs.inorgchem.7b02938
|
[19] |
LANDÍNEZ TÉLLEZ D A, MART NEZ BUITRAGO D, CARDONA C R, et al. Crystalline structure, magnetic response and electronic properties of RE2MgTiO6 (RE=Dy, Gd) double perovskites[J]. Journal of Molecular Structure, 2014, 1067: 205-209. doi: 10.1016/j.molstruc.2014.03.041
|
[20] |
CHEN H, LIN H, HUANG Q M, et al. A novel double-perovskite Gd2ZnTiO6: Mn4+ red phosphor for UV-based w-LEDs: structure and luminescence properties[J]. Journal of Materials Chemistry C, 2016, 4(12): 2374-2381. doi: 10.1039/C6TC00313C
|
[21] |
JIA Y Q. Crystal radii and effective ionic radii of the rare earth ions[J]. Journal of Solid State Chemistry, 1991, 95(1): 184-187. http://www.sciencedirect.com/science/article/pii/002245969190388X
|
[22] |
ZHOU Z W, ZHENG J M, SHI R, et al. Ab Initio site occupancy and far-red emission of Mn4+ in cubic-phase La(MgTi)1/2O3 for plant cultivation[J].ACS Applied Materials & Interfaces, 2017, 9(7):6177-6185. doi: 10.1021/acsami.6b15866
|
[23] |
李金琼.锰(Ⅳ)与稀土离子共激活钛酸镁钇红外发光材料的制备及能量传递机理[D].赣州: 江西理工大学, 2019.
|
[24] |
李金琼, 温和瑞, 孔莉芸, 等.白光LED用LaF3:Eu3+红色荧光粉的制备与表征[J].有色金属科学与工程, 2018, 9(5):97-102. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201805016
|
[25] |
MA R Z, FUKUDA K, SASAKI T, et al. Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations[J]. The Journal of Physical Chemistry B, 2005, 109(13): 6210-6214. doi: 10.1021/jp044282r
|
[26] |
廖金生, 柳少华, 周单, 等.红色荧光粉La2O3:Eu3+的合成及发光性质[J].有色金属科学与工程, 2013, 4(6): 19-23. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2013060004
|
[27] |
BACHMANN V, RONDA C, MEIJERINK A. Temperature quenching of yellow Ce3+ Luminescence in YAG: Ce[J]. Chemistry of Materials, 2009, 21(10): 2077-2084. doi: 10.1021/cm8030768
|
[28] |
HUANG C H, CHEN T M. A novel single-composition trichromatic white-light Ca3Y(GaO)3(BO3)4: Ce3+, Mn2+, Tb3+ phosphor for UV-light emitting diodes[J]. The Journal of Physical Chemistry C, 2011, 115(5): 2349-2355. doi: 10.1021/jp107856d
|
[29] |
DEXTER D L, SCHULMAN J H. Theory of concentration quenching in inorganic phosphors[J]. The Journal of Chemical Physics, 1954, 22(6): 1063-1070. doi: 10.1063/1.1740265
|
[30] |
REISFELD R, GREENBERG E, VELAPOLDI R, et al. Luminescence quantum efficiency of Gd and Tb in borate glasses and the mechanism of energy transfer between them[J]. The Journal of Chemical Physics, 1972, 56(4): 1698-1705. doi: 10.1063/1.1677427
|
[31] |
NIE Z G, ZHANG J H, ZHANG X, et al. Photon cascade luminescence in CaAl12O19:Pr, Cr[J]. Journal of Solid State Chemistry, 2007, 180(10): 2933-2941. doi: 10.1016/j.jssc.2007.08.024
|
[32] |
DEXTER D L. A theory of sensitized luminescence in solids[J]. The Journal of Chemical Physics, 1953, 21(5): 836-850. http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1063/1.1699044
|