Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
MENG Xinyang, LI Yu. Process optimization of preparing glass-ceramic from secondary slag of zinc extraction[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 27-33. DOI: 10.13264/j.cnki.ysjskx.2020.02.004
Citation: MENG Xinyang, LI Yu. Process optimization of preparing glass-ceramic from secondary slag of zinc extraction[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 27-33. DOI: 10.13264/j.cnki.ysjskx.2020.02.004

Process optimization of preparing glass-ceramic from secondary slag of zinc extraction

More Information
  • Received Date: October 28, 2019
  • Published Date: April 29, 2020
  • As a common method of dealing with dust with zinc in steel and iron plants, the Waelz process can recover zinc and other recycled materials from the dust from iron and steel industry, and produce a large amount of high temperature (1 200~1 300 ℃) secondary slag. In this paper, the secondary slag resulting from the extraction of zinc, as the research object, is treated by four different processes: direct smelting, smelting reduction and iron removal, melting by oxygen-blowing at high temperature(1 500 ℃) and melting by oxygen-blowing at low temperature (1 200 ℃), respectively, to prepare glass-ceramic by one-step process. These results showed that the glass-ceramics treated by the smelting and reduction process had the highest flexural strength(123.77 MPa) and water absorption (0.65%). Low temperature oxygen-blowing melting process cost the least melting energy and produced glass-ceramic with relatively high rupture strength (64.48 MPa) and water absorption (0.48%). Further analysis of the heat balance indicated that the heat released was enough to melt secondary slag on condition that oxygen was blown into the slag at temperatures not lower than 1 162 ℃ and the heat utilization efficiency was 50%.
  • [1]
    何哲祥, 张亚星, 李雷.基于高炉渣的重金属废水净化材料的研制[J].有色金属科学与工程, 2019, 10(2):51-55. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201902007
    [2]
    刘聪颖, 王伯昕.我国钢铁冶金渣的利用现状及未来发展趋势[J].中国经贸, 2014(24):121-122. http://d.old.wanfangdata.com.cn/Periodical/zgjm201424082
    [3]
    曾丹林, 刘胜兰, 龚晚君, 等.高炉尘泥渣综合利用研究现状[J].湿法冶金, 2014, 33(2):94-96. http://d.old.wanfangdata.com.cn/Periodical/sfyj201402006
    [4]
    张向伟, 廖洪强, 包向军, 等.除尘灰泥集中处理及资源化利用技术[J].冶金环境保护, 2007(5):32-34. http://d.old.wanfangdata.com.cn/Conference/6467060
    [5]
    田玮, 彭犇, 王晟, 等.含锌电炉粉尘处理技术的研究进展[J].环境工程, 2019, 37(2):144-147. http://d.old.wanfangdata.com.cn/Periodical/hjgc201902027
    [6]
    张平.湿法炼锌浸出渣中回收银的影响因素综述[J].有色金属科学与工程, 2011, 2(4):26-27. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20110407
    [7]
    王立丽, 李正要, 林蜀勇, 等.某锌挥发窑渣银回收试验[J].现代矿业, 2015(2):54-57. http://d.old.wanfangdata.com.cn/Periodical/xdky201502017
    [8]
    王天才.回转窑处理钢铁含锌粉尘关键技术探析[J].中国资源综合利用, 2019(7):181-184. http://d.old.wanfangdata.com.cn/Periodical/zgzyzhly201907059
    [9]
    王成彦, 陈永强.中国铅锌冶金技术状况及发展趋势:铅冶金[J].有色金属科学与工程, 2016, 7(6):5-11. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2016060001
    [10]
    佘雪峰, 薛庆国, 王静松, 等.钢铁厂含锌粉尘综合利用及相关处理工艺比较[J].炼铁, 2010, 29(4):56-62. http://d.old.wanfangdata.com.cn/Periodical/lt201004016
    [11]
    李硕, 邵延海, 何浩, 等.锌窑渣中有价金属综合回收研究现状及展望[J].矿产保护与利用, 2019, 39(1):138-143. http://d.old.wanfangdata.com.cn/Periodical/kcbhyly201901025
    [12]
    闵小波, 陈杰, 梁彦杰, 等.含锌废渣水热硫化浮选回收的工艺研究[J].有色金属科学与工程, 2013, 4(6):1-7. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2013060001
    [13]
    王辉.锌挥发窑废渣物理分选回收工艺研究[J].稀有金属与硬质合金, 2007, 35(1):31-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsyyzhj200701008
    [14]
    李静, 牛皓, 彭金辉, 等.锌窑渣综合回收利用研究现状及展望[J].矿产综合利用, 2008(6):44-48. http://d.old.wanfangdata.com.cn/Periodical/kczhly200806013
    [15]
    王红军, 张文海, 刘志宏, 等.窑渣铁精矿综合利用新工艺[J].中国有色金属学报, 2016, 26(3):673-680. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201603024
    [16]
    余纯丽, 龙良俊, 魏星跃, 等.自然堆存下的飞灰污染物浸出毒性研究[J].环境工程学报, 2009, 3(6):165-168. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb200906035
    [17]
    李宇, 伊耀东, 陈奎元, 等.冶金熔渣混合制备微晶玻璃的组成及性能优化[J].工程科学学报, 2019, 41(10):1288-1297. http://d.old.wanfangdata.com.cn/Periodical/bjkjdxxb201910008
    [18]
    ZHAO L, LI Y, ZHOU Y, et al. Preparation of novel ceramics with high CaO content from steel slag[J]. Materials & Design, 2014, 64:608-613. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=db149e1004c049c43d51a3ed44d8f8fd
    [19]
    ZHAO L, LI Y, ZHANG L, et al. Effects of CaO and Fe2O3 on the microstructure and mechanical properties of SiO2-CaO-MgO-Fe2O3 Ceramics from Steel Slag[J]. ISIJ International, 2016, 57:15-22. http://d.old.wanfangdata.com.cn/Periodical/bjkjdxxb-e201804005
    [20]
    JUNG S S, SOHN I. Crystallization control for remediation of an FetO-Rich CaO-SiO2-Al2O3-MgO EAF waste slag[J]. Environmental Science & Technology, 2014, 48(3):1886-1892. https://www.researchgate.net/publication/259696040_Crystallization_control_for_remediation_of_an_FetO-rich_CaO-SiO2-Al2O3-MgO_EAF_waste_slag
    [21]
    YU Q, YAN C, YONG D, et al. Effect of Fe2O3 on non-isothermal crystallization of CaO-MgO-Al2O3-SiO2 glass[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(7):2279-2284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgysjsxb-e201507023
    [22]
    刘光启, 马连湘, 刘杰.化学化工物性数据手册[M].北京:化学工业出版社, 2002.
    [23]
    程乃良, 牛四通, 徐桂英.纯物质热化学数据手册[M].北京:科学出版社, 2003.
  • Cited by

    Periodical cited type(3)

    1. 李连奇,杨占兵. 奥氏体不锈钢辐照肿胀和偏析的研究进展. 材料导报. 2021(05): 5122-5129 .
    2. 于开元,李彦,孙祎帆,张干,张展瑄. Cu-Nb合金薄膜的微观结构与辐照损伤. 稀有金属. 2021(03): 372-377 .
    3. 晋克勤. 高校冶金工程实验室安全管理初探. 科技视界. 2019(12): 230-231 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (134) PDF downloads (6) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return