Citation: | XU Ping, LIU Danhua, HU Jie, LIN Gaoyong. Synthesis of Ni-Ti composite powder by radio frequency plasma spheroidization process[J]. Nonferrous Metals Science and Engineering, 2020, 39(1): 67-71. DOI: 10.13264/j.cnki.ysjskx.2020.01.011 |
[1] |
WALKER J M, HABERLAND C, TAHERI M, et al. Process development and characterization of additively manufactured nickel-titanium shape memory parts[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(19): 2653-2660. doi: 10.1177/1045389X16635848
|
[2] |
SHEN L, CHEN G, ZHAO S, et al. Properties and microstructures of spherical NiTi powders prepared by plasma rotating electrode process[J]. Materials Science & Engineering of Powder Metallurgy, 2017, 22(4): 539-545. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fmyjclkxygc201704013
|
[3] |
ELAHINIA M H, HASHEMI M, TABESH M, et al. Manufacturing and processing of NiTi implants: A review[J]. Progress in Materials Science, 2012, 57(5): 911-946. doi: 10.1016/j.pmatsci.2011.11.001
|
[4] |
YABLOKOVA G, SPEIRS M, VAN J, et al. Rheological behavior of β-Ti and NiTi powders produced by atomization for SLM production of open porous orthopedic implants[J]. Powder Technology, 2015, 283: 199-209. doi: 10.1016/j.powtec.2015.05.015
|
[5] |
HAMILTON R F, BIMBER B A, TAHERI M, et al. Multi-scale shape memory effect recovery in NiTi alloys additive manufactured by selective laser melting and laser directed energy deposition[J]. Journal of Materials Processing Technology, 2017, 250: 55-64. doi: 10.1016/j.jmatprotec.2017.06.027
|
[6] |
黄卫东, 吕晓卫, 林鑫, 等.激光成形制备生物医用材料研究现状与发展趋势[J].中国材料进展, 2011, 30(4): 1-10. http://d.old.wanfangdata.com.cn/Periodical/zgcljz201104001
|
[7] |
SHEN L, ZHAO S. Properties and microstructures of spherical NiTi powders prepared by plasma rotating electrode process[J]. Materials Science & Engineering of Powder Metallurgy, 2017, 22(4): 539-545. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fmyjclkxygc201704013
|
[8] |
杨全占, 魏彦鹏, 高鹏, 等.金属增材制造技术及其专用材料研究进展[J].材料导报, 2016(1): 107-111.
|
[9] |
金莹, 刘平, 史金光, 等.雾化压力对电极感应熔炼气雾化TC4粉末形貌与性能的影响[J].粉末冶金材料科学与工程, 2018, 23(3): 312-317. doi: 10.3969/j.issn.1673-0224.2018.03.012
|
[10] |
张飞, 高正江.增材制造用金属粉末材料及其制备技术[J].工业技术创新, 2017(4): 63-67. http://d.old.wanfangdata.com.cn/Periodical/gyjscx201704012
|
[11] |
沈垒, 陈刚, 赵少阳, 等. PREP法制备球形NiTi合金粉末的特性及显微组织[J].粉末冶金材料科学与工程, 2017(4): 539-543. doi: 10.3969/j.issn.1673-0224.2017.04.013
|
[12] |
王建军, 郝俊杰, 郭志猛, 等.射频等离子体制备球形粉末的数值模拟[J].中国科技论文, 2015, 10(22): 2642-2647. doi: 10.3969/j.issn.2095-2783.2015.22.014
|
[13] |
王运锋.射频等离子体制备球形TC4钛合金粉[J].钛工业进展, 2013(6): 44-44. http://d.old.wanfangdata.com.cn/Periodical/tgyjz201306021
|
[14] |
王辉, 陈再良.形状记忆合金材料的应用[J].机械工程材料, 2002(3): 5-8. doi: 10.3969/j.issn.1000-3738.2002.03.002
|
[15] |
LI R, QIN M, HUANG H, et al. Fabrication of fine-grained spherical tungsten powder by radio frequency (RF) inductively coupled plasma spheroidization combined with jet milling[J]. Advanced Powder Technology, 2017, 28(12): 3158-3163. doi: 10.1016/j.apt.2017.09.019
|
[16] |
WEI W H, WANG L Z, CHEN T, et al. Study on the flow properties of Ti-6Al-4V powders prepared by radio-frequency plasma spheroidization[J]. Advanced Powder Technology, 2017, 28(9): 2431-2437. doi: 10.1016/j.apt.2017.06.025
|
[17] |
HAO Z, FU Z, LIU J, et al. Spheroidization of a granulated molybdenum powder by radio frequency inductively coupled plasma[J]. International Journal of Refractory Metals and Hard Materials, 2019, 82: 15-22. doi: 10.1016/j.ijrmhm.2019.03.023
|
[18] |
王建军, 郝俊杰, 郭志猛.射频等离子体制备球形铌粉[J].粉末冶金材料科学与工程, 2014(5): 361-366. http://d.old.wanfangdata.com.cn/Periodical/fmyjclkxygc201403005
|
[19] |
黎英, 刘鸿.电感耦合等离子发射光谱法测定稀土精矿中钍量[J].有色金属科学与工程, 2010, 1(6): 86-88. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201304010
|
[20] |
谢璐, 刘鸿, 杨峰.某钨矿山土壤中重金属元素测定[J].有色金属科学与工程, 2015, 6(5): 124-128. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201505023
|
[21] |
ZHANG H, BAI L, HU P, et al. Single-step pathway for the synthesis of tungsten nanosized powders by RF induction thermal plasma[J]. International Journal of Refractory Metals and Hard Materials, 2012, 31: 33-38. doi: 10.1016/j.ijrmhm.2011.09.002
|
[22] |
LU X, ZHU L P, ZHANG B, et al. Simulation of flow field and particle trajectory of radio frequency inductively coupled plasma spheroidization[J]. Computational Materials Science, 2012, 65: 13-18. doi: 10.1016/j.commatsci.2012.06.008
|
[23] |
KOBAYASHI N, KAWAKAMI Y, KAMADA K, et al. Spherical submicron-size copper powders coagulated from a vapor phase in RF induction thermal plasma[J]. Thin Solid Films, 2008, 516(13): 4402-4406. doi: 10.1016/j.tsf.2007.10.064
|
[1] | LIAN Baidong, QIAO Dengpan, YANG Tianyu, WANG Jun, CHEN Jian, LI Shaoteng, LI Yongming, GAO Bo, LONG Gan. Research on pipeline transportation design of tailings slurry from a tin mine in Yunnan Province based on ANSYS-FLUENT[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 407-421. DOI: 10.13264/j.cnki.ysjskx.2024.03.011 |
[2] | GUO Hao, WANG Yajie, ZHAO Hongbo, ZUO Haibin. Numerical simulation of pulverized coal forming process[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 357-363. DOI: 10.13264/j.cnki.ysjskx.2024.03.006 |
[3] | LIU Zheng, ZHANG Jiayi, DENG Keyue. Numerical simulation of aluminum molten liquid and its particle trajectories in electromagnetic field based on Fluent[J]. Nonferrous Metals Science and Engineering, 2015, 6(4): 46-51. DOI: 10.13264/j.cnki.ysjskx.2015.04.010 |
[4] | CHENG Qiuting, DENG Fei, CHEN Yanhong, XIA Yijiang, WANG Xiaojun. Numerical simulation analysis on the stability of mined-out area[J]. Nonferrous Metals Science and Engineering, 2015, (2): 85-88. DOI: 10.13264/j.cnki.ysjskx.2015.02.016 |
[5] | ZHAO Kui, SHAO Hai, XU Feng, ZENG Peng, DENG Xiao-ping, WANG Ming. Numerical simulation of stability of mining of different mining entrances in a copper mine[J]. Nonferrous Metals Science and Engineering, 2013, 4(2): 46-50. DOI: 10.13264/j.cnki.ysjskx.2013.02.009 |
[6] | WU Hui, CAI Si-jing, WANG Zhang, CHEN Wu-jiu. Numerical simulation of ventilation network and its validation in Hemushan iron mine[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 60-65. DOI: 10.13264/j.cnki.ysjskx.2012.03.013 |
[7] | RAO Yun-zhang, CHEN Hui, XIAO Guang-zhe, CHEN Guo-liang. On the Design of Stope Bottom Structures Based on FLAC 3D Numerical Simulation[J]. Nonferrous Metals Science and Engineering, 2011, 2(2): 43-47. DOI: 10.13264/j.cnki.ysjskx.2011.02.009 |
[8] | XU Cong-wu, ZHAO Kui, XIE Dao-hui. Numerical Simulation Research on Tunnel Arrangement in Schistosity Rock[J]. Nonferrous Metals Science and Engineering, 2008, 22(3): 6-8. |
[9] | CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17. |
[10] | QIAO Jun-yu, XU Guo-yuan. Numerical Simulation in Reinforcement for Deep Foundation Pit with Soil Nailing[J]. Nonferrous Metals Science and Engineering, 2005, 19(4): 24-24. |