Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
XU Ping, LIU Danhua, HU Jie, LIN Gaoyong. Synthesis of Ni-Ti composite powder by radio frequency plasma spheroidization process[J]. Nonferrous Metals Science and Engineering, 2020, 39(1): 67-71. DOI: 10.13264/j.cnki.ysjskx.2020.01.011
Citation: XU Ping, LIU Danhua, HU Jie, LIN Gaoyong. Synthesis of Ni-Ti composite powder by radio frequency plasma spheroidization process[J]. Nonferrous Metals Science and Engineering, 2020, 39(1): 67-71. DOI: 10.13264/j.cnki.ysjskx.2020.01.011

Synthesis of Ni-Ti composite powder by radio frequency plasma spheroidization process

More Information
  • Received Date: August 07, 2019
  • Published Date: February 28, 2020
  • Near-equiatomic Ni-Ti composite powder was synthesized by using gas atomized Ni powder and irregularly shaped Ti powder by TEKNA radio frequency plasma spheroidization process. The effect of carrier gas flow rate on the morphology, particle size, phase distribution and element distribution of the prepared powder was investigated. The morphology and particle size of the power were characterized by scanning electron microscopy and particle size analyzer while the phase constitution and element distribution were characterized by XRD and EDS. The results showed that compared with original powder, the prepared powder had a significant increase in particle size; as the carrier gas flow rate increased, so did Ni content of the powder. And when the carrier gas flow rate was 2.5 L/min, the spheroidization rate reached 100% and the Ni mass fraction was 55.2%; the spheroidized powder consisted of three phases, namely Ni phase, Ti phase and NiTi phase; Ni and Ti elements could be observed in each particle of the power, but the mass fraction of Ti and Ni contained in each particle was not completely the same.
  • [1]
    WALKER J M, HABERLAND C, TAHERI M, et al. Process development and characterization of additively manufactured nickel-titanium shape memory parts[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(19): 2653-2660. doi: 10.1177/1045389X16635848
    [2]
    SHEN L, CHEN G, ZHAO S, et al. Properties and microstructures of spherical NiTi powders prepared by plasma rotating electrode process[J]. Materials Science & Engineering of Powder Metallurgy, 2017, 22(4): 539-545. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fmyjclkxygc201704013
    [3]
    ELAHINIA M H, HASHEMI M, TABESH M, et al. Manufacturing and processing of NiTi implants: A review[J]. Progress in Materials Science, 2012, 57(5): 911-946. doi: 10.1016/j.pmatsci.2011.11.001
    [4]
    YABLOKOVA G, SPEIRS M, VAN J, et al. Rheological behavior of β-Ti and NiTi powders produced by atomization for SLM production of open porous orthopedic implants[J]. Powder Technology, 2015, 283: 199-209. doi: 10.1016/j.powtec.2015.05.015
    [5]
    HAMILTON R F, BIMBER B A, TAHERI M, et al. Multi-scale shape memory effect recovery in NiTi alloys additive manufactured by selective laser melting and laser directed energy deposition[J]. Journal of Materials Processing Technology, 2017, 250: 55-64. doi: 10.1016/j.jmatprotec.2017.06.027
    [6]
    黄卫东, 吕晓卫, 林鑫, 等.激光成形制备生物医用材料研究现状与发展趋势[J].中国材料进展, 2011, 30(4): 1-10. http://d.old.wanfangdata.com.cn/Periodical/zgcljz201104001
    [7]
    SHEN L, ZHAO S. Properties and microstructures of spherical NiTi powders prepared by plasma rotating electrode process[J]. Materials Science & Engineering of Powder Metallurgy, 2017, 22(4): 539-545. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fmyjclkxygc201704013
    [8]
    杨全占, 魏彦鹏, 高鹏, 等.金属增材制造技术及其专用材料研究进展[J].材料导报, 2016(1): 107-111.
    [9]
    金莹, 刘平, 史金光, 等.雾化压力对电极感应熔炼气雾化TC4粉末形貌与性能的影响[J].粉末冶金材料科学与工程, 2018, 23(3): 312-317. doi: 10.3969/j.issn.1673-0224.2018.03.012
    [10]
    张飞, 高正江.增材制造用金属粉末材料及其制备技术[J].工业技术创新, 2017(4): 63-67. http://d.old.wanfangdata.com.cn/Periodical/gyjscx201704012
    [11]
    沈垒, 陈刚, 赵少阳, 等. PREP法制备球形NiTi合金粉末的特性及显微组织[J].粉末冶金材料科学与工程, 2017(4): 539-543. doi: 10.3969/j.issn.1673-0224.2017.04.013
    [12]
    王建军, 郝俊杰, 郭志猛, 等.射频等离子体制备球形粉末的数值模拟[J].中国科技论文, 2015, 10(22): 2642-2647. doi: 10.3969/j.issn.2095-2783.2015.22.014
    [13]
    王运锋.射频等离子体制备球形TC4钛合金粉[J].钛工业进展, 2013(6): 44-44. http://d.old.wanfangdata.com.cn/Periodical/tgyjz201306021
    [14]
    王辉, 陈再良.形状记忆合金材料的应用[J].机械工程材料, 2002(3): 5-8. doi: 10.3969/j.issn.1000-3738.2002.03.002
    [15]
    LI R, QIN M, HUANG H, et al. Fabrication of fine-grained spherical tungsten powder by radio frequency (RF) inductively coupled plasma spheroidization combined with jet milling[J]. Advanced Powder Technology, 2017, 28(12): 3158-3163. doi: 10.1016/j.apt.2017.09.019
    [16]
    WEI W H, WANG L Z, CHEN T, et al. Study on the flow properties of Ti-6Al-4V powders prepared by radio-frequency plasma spheroidization[J]. Advanced Powder Technology, 2017, 28(9): 2431-2437. doi: 10.1016/j.apt.2017.06.025
    [17]
    HAO Z, FU Z, LIU J, et al. Spheroidization of a granulated molybdenum powder by radio frequency inductively coupled plasma[J]. International Journal of Refractory Metals and Hard Materials, 2019, 82: 15-22. doi: 10.1016/j.ijrmhm.2019.03.023
    [18]
    王建军, 郝俊杰, 郭志猛.射频等离子体制备球形铌粉[J].粉末冶金材料科学与工程, 2014(5): 361-366. http://d.old.wanfangdata.com.cn/Periodical/fmyjclkxygc201403005
    [19]
    黎英, 刘鸿.电感耦合等离子发射光谱法测定稀土精矿中钍量[J].有色金属科学与工程, 2010, 1(6): 86-88. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201304010
    [20]
    谢璐, 刘鸿, 杨峰.某钨矿山土壤中重金属元素测定[J].有色金属科学与工程, 2015, 6(5): 124-128. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201505023
    [21]
    ZHANG H, BAI L, HU P, et al. Single-step pathway for the synthesis of tungsten nanosized powders by RF induction thermal plasma[J]. International Journal of Refractory Metals and Hard Materials, 2012, 31: 33-38. doi: 10.1016/j.ijrmhm.2011.09.002
    [22]
    LU X, ZHU L P, ZHANG B, et al. Simulation of flow field and particle trajectory of radio frequency inductively coupled plasma spheroidization[J]. Computational Materials Science, 2012, 65: 13-18. doi: 10.1016/j.commatsci.2012.06.008
    [23]
    KOBAYASHI N, KAWAKAMI Y, KAMADA K, et al. Spherical submicron-size copper powders coagulated from a vapor phase in RF induction thermal plasma[J]. Thin Solid Films, 2008, 516(13): 4402-4406. doi: 10.1016/j.tsf.2007.10.064
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]AN Hourui, PENG Chenliang, LIN Fuming, WANG Guanshi, LONG Ping, XIAO Xia. Study on cation and electronic potential distribution in montmorillonite double layer considering ion size effects[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 952-962. DOI: 10.13264/j.cnki.ysjskx.2024.06.018
    [3]GUO Ziting, HUANG Jinchao, XIAO Qingmei, ZHONG Shengwen. Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 227-234. DOI: 10.13264/j.cnki.ysjskx.2023.02.009
    [4]YANG Yuping, SU Ruiming, MA Siyi, NIE Sainan, LI Guanglong. Effects of Ni on structure and mechanical properties of Al-Cu-Mn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 67-73. DOI: 10.13264/j.cnki.ysjskx.2023.01.009
    [5]WANG Qi, JIAO Shuqiang, ZHU Hongmin, ZHAO Shiqiang. SPS sintering of amorphous nano-sized Si2N2O powders and characterization of its sintered bulks[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 58-63. DOI: 10.13264/j.cnki.ysjskx.2017.05.008
    [6]WEN Yan, ZHANG Qinying, GUO Shengda, SU Wei, HUANG Zhu, CHEN Hao. SPS sintering process of WC-6Co cemented carbide[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 74-78. DOI: 10.13264/j.cnki.ysjskx.2017.03.012
    [7]LIN Shipeng, LIU Jinyan, JI Yanli. Research status of CNTs reinforced aluminum matrix composites[J]. Nonferrous Metals Science and Engineering, 2017, 8(2): 57-62. DOI: 10.13264/j.cnki.ysjskx.2017.02.010
    [8]ZHANG Da-chao, ZHANG Ju-hua, LIU Xiao-lai, GUAN Da-ming, XU Xiao-yi, HU Jiao-jiao. The effective REES distribution in the farmland soil environment of rare earth mining region in southern Jiangxi[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 87-90. DOI: 10.13264/j.cnki.ysjskx.2013.03.018
    [9]LIU Ping, DONG Su-wei, LI An-yun, CHEN Jin-qing, CHEN Xing-bin, YAO Wen-li. The Applications of ICP-MS in Analyzing Rare Earth Elements[J]. Nonferrous Metals Science and Engineering, 2011, 2(3): 83-87.
    [10]WU Wei-ming. Determination Methods of Rare Earth Elements in Mud-mineral[J]. Nonferrous Metals Science and Engineering, 2011, 2(3): 76-79.
  • Cited by

    Periodical cited type(8)

    1. 代涵,张金钟,邢鹏,赵承佑. 缓倾斜中厚破碎矿体上向中深孔分条空场嗣后充填法. 中国有色金属. 2023(S1): 136-139 .
    2. 张驰,崔林鹏,冀虎,李建. 基于无人机载三维激光扫描测量系统的采空区扫描及应用研究. 有色金属科学与工程. 2022(06): 98-105 . 本站查看
    3. 任建平,范富泉,王雷鸣. 某高岭土矿崩落法转充填法采矿工艺优化研究. 铜业工程. 2022(06): 29-32 .
    4. 陈寅,崔松,张驰,潘桂海. 某铜矿中深孔试验采场空区探测及可视化分析. 矿业研究与开发. 2021(04): 22-26 .
    5. 李勇,韩朝应,郑凯,李杰瑞,陈肖虎. 贵州喀斯特地区磷矿充填开采研究. 贵州大学学报(自然科学版). 2021(02): 25-29 .
    6. 杨宁,尹贤刚,林卫星,欧任泽. 分步骤交错式上向分层充填采矿法. 矿业研究与开发. 2021(05): 1-4 .
    7. 徐祖德,邓涛,郎鹏程. 缓倾斜中厚磷矿Ⅱ矿层综合机械化采矿技术可行性研究. 煤炭技术. 2021(06): 72-75 .
    8. 贺锋坚,余超,罗爽,牛向东. 缓倾斜中厚铝土矿体房柱采矿法优化研究. 矿业研究与开发. 2020(06): 5-9 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (74) PDF downloads (3) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return