Citation: | XU Ping, LIU Danhua, HU Jie, LIN Gaoyong. Synthesis of Ni-Ti composite powder by radio frequency plasma spheroidization process[J]. Nonferrous Metals Science and Engineering, 2020, 39(1): 67-71. DOI: 10.13264/j.cnki.ysjskx.2020.01.011 |
[1] |
WALKER J M, HABERLAND C, TAHERI M, et al. Process development and characterization of additively manufactured nickel-titanium shape memory parts[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(19): 2653-2660. doi: 10.1177/1045389X16635848
|
[2] |
SHEN L, CHEN G, ZHAO S, et al. Properties and microstructures of spherical NiTi powders prepared by plasma rotating electrode process[J]. Materials Science & Engineering of Powder Metallurgy, 2017, 22(4): 539-545. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fmyjclkxygc201704013
|
[3] |
ELAHINIA M H, HASHEMI M, TABESH M, et al. Manufacturing and processing of NiTi implants: A review[J]. Progress in Materials Science, 2012, 57(5): 911-946. doi: 10.1016/j.pmatsci.2011.11.001
|
[4] |
YABLOKOVA G, SPEIRS M, VAN J, et al. Rheological behavior of β-Ti and NiTi powders produced by atomization for SLM production of open porous orthopedic implants[J]. Powder Technology, 2015, 283: 199-209. doi: 10.1016/j.powtec.2015.05.015
|
[5] |
HAMILTON R F, BIMBER B A, TAHERI M, et al. Multi-scale shape memory effect recovery in NiTi alloys additive manufactured by selective laser melting and laser directed energy deposition[J]. Journal of Materials Processing Technology, 2017, 250: 55-64. doi: 10.1016/j.jmatprotec.2017.06.027
|
[6] |
黄卫东, 吕晓卫, 林鑫, 等.激光成形制备生物医用材料研究现状与发展趋势[J].中国材料进展, 2011, 30(4): 1-10. http://d.old.wanfangdata.com.cn/Periodical/zgcljz201104001
|
[7] |
SHEN L, ZHAO S. Properties and microstructures of spherical NiTi powders prepared by plasma rotating electrode process[J]. Materials Science & Engineering of Powder Metallurgy, 2017, 22(4): 539-545. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fmyjclkxygc201704013
|
[8] |
杨全占, 魏彦鹏, 高鹏, 等.金属增材制造技术及其专用材料研究进展[J].材料导报, 2016(1): 107-111.
|
[9] |
金莹, 刘平, 史金光, 等.雾化压力对电极感应熔炼气雾化TC4粉末形貌与性能的影响[J].粉末冶金材料科学与工程, 2018, 23(3): 312-317. doi: 10.3969/j.issn.1673-0224.2018.03.012
|
[10] |
张飞, 高正江.增材制造用金属粉末材料及其制备技术[J].工业技术创新, 2017(4): 63-67. http://d.old.wanfangdata.com.cn/Periodical/gyjscx201704012
|
[11] |
沈垒, 陈刚, 赵少阳, 等. PREP法制备球形NiTi合金粉末的特性及显微组织[J].粉末冶金材料科学与工程, 2017(4): 539-543. doi: 10.3969/j.issn.1673-0224.2017.04.013
|
[12] |
王建军, 郝俊杰, 郭志猛, 等.射频等离子体制备球形粉末的数值模拟[J].中国科技论文, 2015, 10(22): 2642-2647. doi: 10.3969/j.issn.2095-2783.2015.22.014
|
[13] |
王运锋.射频等离子体制备球形TC4钛合金粉[J].钛工业进展, 2013(6): 44-44. http://d.old.wanfangdata.com.cn/Periodical/tgyjz201306021
|
[14] |
王辉, 陈再良.形状记忆合金材料的应用[J].机械工程材料, 2002(3): 5-8. doi: 10.3969/j.issn.1000-3738.2002.03.002
|
[15] |
LI R, QIN M, HUANG H, et al. Fabrication of fine-grained spherical tungsten powder by radio frequency (RF) inductively coupled plasma spheroidization combined with jet milling[J]. Advanced Powder Technology, 2017, 28(12): 3158-3163. doi: 10.1016/j.apt.2017.09.019
|
[16] |
WEI W H, WANG L Z, CHEN T, et al. Study on the flow properties of Ti-6Al-4V powders prepared by radio-frequency plasma spheroidization[J]. Advanced Powder Technology, 2017, 28(9): 2431-2437. doi: 10.1016/j.apt.2017.06.025
|
[17] |
HAO Z, FU Z, LIU J, et al. Spheroidization of a granulated molybdenum powder by radio frequency inductively coupled plasma[J]. International Journal of Refractory Metals and Hard Materials, 2019, 82: 15-22. doi: 10.1016/j.ijrmhm.2019.03.023
|
[18] |
王建军, 郝俊杰, 郭志猛.射频等离子体制备球形铌粉[J].粉末冶金材料科学与工程, 2014(5): 361-366. http://d.old.wanfangdata.com.cn/Periodical/fmyjclkxygc201403005
|
[19] |
黎英, 刘鸿.电感耦合等离子发射光谱法测定稀土精矿中钍量[J].有色金属科学与工程, 2010, 1(6): 86-88. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201304010
|
[20] |
谢璐, 刘鸿, 杨峰.某钨矿山土壤中重金属元素测定[J].有色金属科学与工程, 2015, 6(5): 124-128. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201505023
|
[21] |
ZHANG H, BAI L, HU P, et al. Single-step pathway for the synthesis of tungsten nanosized powders by RF induction thermal plasma[J]. International Journal of Refractory Metals and Hard Materials, 2012, 31: 33-38. doi: 10.1016/j.ijrmhm.2011.09.002
|
[22] |
LU X, ZHU L P, ZHANG B, et al. Simulation of flow field and particle trajectory of radio frequency inductively coupled plasma spheroidization[J]. Computational Materials Science, 2012, 65: 13-18. doi: 10.1016/j.commatsci.2012.06.008
|
[23] |
KOBAYASHI N, KAWAKAMI Y, KAMADA K, et al. Spherical submicron-size copper powders coagulated from a vapor phase in RF induction thermal plasma[J]. Thin Solid Films, 2008, 516(13): 4402-4406. doi: 10.1016/j.tsf.2007.10.064
|
[1] | FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010 |
[2] | AN Hourui, PENG Chenliang, LIN Fuming, WANG Guanshi, LONG Ping, XIAO Xia. Study on cation and electronic potential distribution in montmorillonite double layer considering ion size effects[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 952-962. DOI: 10.13264/j.cnki.ysjskx.2024.06.018 |
[3] | GUO Ziting, HUANG Jinchao, XIAO Qingmei, ZHONG Shengwen. Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 227-234. DOI: 10.13264/j.cnki.ysjskx.2023.02.009 |
[4] | YANG Yuping, SU Ruiming, MA Siyi, NIE Sainan, LI Guanglong. Effects of Ni on structure and mechanical properties of Al-Cu-Mn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 67-73. DOI: 10.13264/j.cnki.ysjskx.2023.01.009 |
[5] | WANG Qi, JIAO Shuqiang, ZHU Hongmin, ZHAO Shiqiang. SPS sintering of amorphous nano-sized Si2N2O powders and characterization of its sintered bulks[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 58-63. DOI: 10.13264/j.cnki.ysjskx.2017.05.008 |
[6] | WEN Yan, ZHANG Qinying, GUO Shengda, SU Wei, HUANG Zhu, CHEN Hao. SPS sintering process of WC-6Co cemented carbide[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 74-78. DOI: 10.13264/j.cnki.ysjskx.2017.03.012 |
[7] | LIN Shipeng, LIU Jinyan, JI Yanli. Research status of CNTs reinforced aluminum matrix composites[J]. Nonferrous Metals Science and Engineering, 2017, 8(2): 57-62. DOI: 10.13264/j.cnki.ysjskx.2017.02.010 |
[8] | ZHANG Da-chao, ZHANG Ju-hua, LIU Xiao-lai, GUAN Da-ming, XU Xiao-yi, HU Jiao-jiao. The effective REES distribution in the farmland soil environment of rare earth mining region in southern Jiangxi[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 87-90. DOI: 10.13264/j.cnki.ysjskx.2013.03.018 |
[9] | LIU Ping, DONG Su-wei, LI An-yun, CHEN Jin-qing, CHEN Xing-bin, YAO Wen-li. The Applications of ICP-MS in Analyzing Rare Earth Elements[J]. Nonferrous Metals Science and Engineering, 2011, 2(3): 83-87. |
[10] | WU Wei-ming. Determination Methods of Rare Earth Elements in Mud-mineral[J]. Nonferrous Metals Science and Engineering, 2011, 2(3): 76-79. |
1. |
代涵,张金钟,邢鹏,赵承佑. 缓倾斜中厚破碎矿体上向中深孔分条空场嗣后充填法. 中国有色金属. 2023(S1): 136-139 .
![]() | |
2. |
张驰,崔林鹏,冀虎,李建. 基于无人机载三维激光扫描测量系统的采空区扫描及应用研究. 有色金属科学与工程. 2022(06): 98-105 .
![]() | |
3. |
任建平,范富泉,王雷鸣. 某高岭土矿崩落法转充填法采矿工艺优化研究. 铜业工程. 2022(06): 29-32 .
![]() | |
4. |
陈寅,崔松,张驰,潘桂海. 某铜矿中深孔试验采场空区探测及可视化分析. 矿业研究与开发. 2021(04): 22-26 .
![]() | |
5. |
李勇,韩朝应,郑凯,李杰瑞,陈肖虎. 贵州喀斯特地区磷矿充填开采研究. 贵州大学学报(自然科学版). 2021(02): 25-29 .
![]() | |
6. |
杨宁,尹贤刚,林卫星,欧任泽. 分步骤交错式上向分层充填采矿法. 矿业研究与开发. 2021(05): 1-4 .
![]() | |
7. |
徐祖德,邓涛,郎鹏程. 缓倾斜中厚磷矿Ⅱ矿层综合机械化采矿技术可行性研究. 煤炭技术. 2021(06): 72-75 .
![]() | |
8. |
贺锋坚,余超,罗爽,牛向东. 缓倾斜中厚铝土矿体房柱采矿法优化研究. 矿业研究与开发. 2020(06): 5-9 .
![]() |