Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
YAN Guangli, FENG Yusheng, XU Shuitai. Effect of dysprosium-iron cathode electroerosion on electrolysis characteristics of rare earth electrolytic[J]. Nonferrous Metals Science and Engineering, 2019, 10(6): 92-96. DOI: 10.13264/j.cnki.ysjskx.2019.06.015
Citation: YAN Guangli, FENG Yusheng, XU Shuitai. Effect of dysprosium-iron cathode electroerosion on electrolysis characteristics of rare earth electrolytic[J]. Nonferrous Metals Science and Engineering, 2019, 10(6): 92-96. DOI: 10.13264/j.cnki.ysjskx.2019.06.015

Effect of dysprosium-iron cathode electroerosion on electrolysis characteristics of rare earth electrolytic

More Information
  • Received Date: September 27, 2019
  • Published Date: December 30, 2019
  • With the electrolysis process of the rare earth molten salt in the electric tank, the cathode shape will undergo electrical corrosion as time goes on, whose cone angle increases continuously at the bottom of the rare earth electric tank, and it has a certain effect on the electrolysis efficiency and the thermal field. With the aid of COMSOL multi physical field coupling software, this paper, using the rare earth cell with dysprosium iron cathode in Vietnam as the research object, simulates the electrolysis characteristics of different cathodes in different electrolysis stages and obtains the curves of the relation between the alpha value of different cathode cones and the maximum current density in the rare earth electrolysis cell. The cathodic electro etching influence of the on the whole process of the electrolytic reaction in the cell is analyzed, providing a reference for the later maintenance of the cell.
  • [1]
    徐水太.赣州稀土产业可持续发展的问题与对策研究[J].江西理工大学学报, 2014, 35(4):47-50. http://d.old.wanfangdata.com.cn/Periodical/nfyjxyxb201404010
    [2]
    邹国良, 吴一丁, 蔡嗣经.离子型稀土矿浸取工艺对资源、环境的影响[J].有色金属科学与工程, 2014, 5(2):100-106. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201402018
    [3]
    罗嗣海, 黄群群, 王观石, 等.离子型稀土浸矿过程中渗透性变化规律的试验研究[J].有色金属科学与工程, 2014, 5(2):95-99. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201402017
    [4]
    王海辉, 逄启寿, 郜飘飘.稀土电解槽温度场模拟分析与研究[J].稀有金属与硬质合金, 2017, 45(4):12-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsyyzhj201704003
    [5]
    王亮, 逄启寿.稀土电解槽三维电场和温度场的分析研究[J].中国有色冶金, 2017, 12(6): 44-47. doi: 10.3969/j.issn.1672-6103.2017.06.012
    [6]
    刘庆生, 王建鲁, 汤卫东.稀土铁合金电解槽电热场数值模拟[J].中国稀土学报, 2016, 34(4):444-452. http://www.cqvip.com/QK/90301X/201604/669800768.html
    [7]
    刘宇新, 刘中兴, 杨立军.稀土电解槽气液两相流动数值模拟[J].有色金属(冶炼部分), 2011, 12(10):27-33. doi: 10.3969/j.issn.1007-7545.2011.10.008
    [8]
    逄启寿, 罗桂平.立式稀土氟化炉热传导与内部气流规律研究[J].中国有色冶金, 2016, 6(1):41-45. doi: 10.3969/j.issn.1672-6103.2016.01.011
    [9]
    伍永福, 官卜瑞, 刘中兴, 等.稀土电解槽电解效率优化数值模拟[J].有色金属(冶炼部分), 2015, 12(12):42-55. doi: 10.3969/j.issn.1007-7545.2015.12.011
    [10]
    逄启寿, 王飞, 郜飘飘, 等. 8 kA稀土电解槽阴极对电场影响的数值模拟[J].机械设计与制造, 2016, 12(2):103-109. doi: 10.3969/j.issn.1001-3997.2016.02.027
    [11]
    王海辉, 逄启寿, 郜飘飘.大电流稀土电解槽三维电场的数值仿真[J].中国稀土学报, 2017, 35(4):514-519. http://d.old.wanfangdata.com.cn/Periodical/zgxtxb201704011
    [12]
    伍永福, 赵光磊, 刘中兴, 等.不同极间距下稀土电解槽内电-热场耦合数值模拟研究[J].中国稀土学报, 2017, 35(5):606-613. http://d.old.wanfangdata.com.cn/Periodical/zgxtxb201705007
    [13]
    王海辉, 逄启寿.大电流稀土电解槽的优化分析[J].机械设计与制造, 2017, 12(9):77-79. doi: 10.3969/j.issn.1001-3997.2017.09.020
    [14]
    逄启寿, 邹金萍, 郜飘飘.氟化炉氟化反应过程中气体流场的数值模拟[J].机械设计与制造, 2016, 12(3):111-113. doi: 10.3969/j.issn.1001-3997.2016.03.030
    [15]
    冯羽生, 逄启寿, 许礼刚.不同阴阳极圆心距下稀土电解槽的电解特性分析[J].厦门大学学报, 2018, 6(4):581-586. http://d.old.wanfangdata.com.cn/Periodical/xmdxxb201804022
    [16]
    龚姚腾, 周宏杰, 逄启寿, 等. 15 kA稀土电解槽阴阳极中心距对槽内电热场影响的模拟分析[J].稀有金属与硬质合金, 2018, 46(2): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsyyzhj201802001
    [17]
    华园东.万安级稀土电解槽电场和流场模拟及开发设计[D].赣州: 江西理工大学, 2015. http://d.wanfangdata.com.cn/Thesis/D688358
    [18]
    吴文元.稀土金属电解槽流场分析及开发设计[D].赣州: 江西理工大学, 2013. http://d.wanfangdata.com.cn/Thesis/D444378
    [19]
    周雄军.8 kA稀土电解槽温度场模拟及温度控制[D].赣州: 江西理工大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10407-1015577728.htm
    [20]
    郜飘飘.大电流稀土电解槽三维全槽仿真模拟与设计研究[D].赣州: 江西理工大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10407-1017111834.htm
    [21]
    王海辉.10 kA稀土电解槽的设计[D].赣州: 江西理工大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10407-1018219928.htm
    [22]
    王亮亮, 颜波, 刘木根.阳极结构调整对稀土电解槽的影响[J].中国稀土学报, 2015, 33(2):217-222. http://d.old.wanfangdata.com.cn/Periodical/zgxtxb201502012
    [23]
    叶楠, 逄启寿, 张浩, 等.大电流稀土电解槽阳极结构研究[J/OL].中国稀土学报, http://kns.cnki.net/kcms/detail/11.2365.TG.20190313.1708.012.html.
  • Related Articles

    [1]WEN Tanggen, ZHANG Bin, ZHANG Jiawei, LI Mingzhou, YANG Shaohua. Numerical simulation of multiphase flow in 6 kA neodymium electrolytic cell[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 706-715. DOI: 10.13264/j.cnki.ysjskx.2023.05.014
    [2]PANG Qishou, XIN Zhilin, LIN Xiaocheng, GONG Yaoteng, WANG Zhiyang. Numerical simulation of the electrochemical 3D time-varying flow field in a rare earth electrolytic cell[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 152-158. DOI: 10.13264/j.cnki.ysjskx.2022.03.019
    [3]ZHANG Hong-liang, LIANG Jin-ding, XU Yu-jie, LI Jie. Simulation of strong coupling electromagnetic current in aluminum reduction cells and its application in new cathodes[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 26-33. DOI: 10.13264/j.cnki.ysjskx.2017.05.004
    [4]LI Mingzhou, HUANG Jindi, TONG Changren, ZHANG Wenhai, LI Junbiao, WANG Jinliang. Numerical analysis of thermal-electrical fields in copper electrolytic cell[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 50-55. DOI: 10.13264/j.cnki.ysjskx.2016.06.009
    [5]WANG Jinliang, YANG Yiqing. Analysis of the electric field in rare earth molten salt electrolytic cell based on Comsol[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 30-34. DOI: 10.13264/j.cnki.ysjskx.2016.06.006
    [6]CHEN Yan-xin, PENG Shao-hua, ZHOU Ai-guo. The application of small box-fastener in rare earth electrolysis[J]. Nonferrous Metals Science and Engineering, 2012, 3(1): 49-52. DOI: 10.13264/j.cnki.ysjskx.2012.01.020
    [7]XING Li, HE Jian-zhong, GAO De-jin, HANG Chang-qing, FENG Feng-ming, XING Hua. Development and Application of Pre-baked Anode Electrolytic Cell Clamping Conductive Fixture[J]. Nonferrous Metals Science and Engineering, 2010, 24(3-4): 164-169.
    [8]DENG Zuo-min, LIN Ping, WANG Jun. The Study about the Relation between Rare-earth-melted-production's Various Factors and Output-rate[J]. Nonferrous Metals Science and Engineering, 2007, 21(3): 33-34,47.
    [9]WANG Jun, DENG Zuo-min, ZHANG Xiao-lian. The Test Research on Energy Balance of10kA Fluoride System in RE Fused-salt Electrolysis Cell[J]. Nonferrous Metals Science and Engineering, 2004, 18(2): 30-32, 37.
    [10]DENG Zou-min, ZHANG Xiao-lian, WAN Jun. Numerical Analysis of Temperature Field in RE Electrolysis Cell[J]. Nonferrous Metals Science and Engineering, 2004, 18(1): 26-27,34.

Catalog

    Article Metrics

    Article views (91) PDF downloads (8) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return