Citation: | YAN Guangli, FENG Yusheng, XU Shuitai. Effect of dysprosium-iron cathode electroerosion on electrolysis characteristics of rare earth electrolytic[J]. Nonferrous Metals Science and Engineering, 2019, 10(6): 92-96. DOI: 10.13264/j.cnki.ysjskx.2019.06.015 |
[1] |
徐水太.赣州稀土产业可持续发展的问题与对策研究[J].江西理工大学学报, 2014, 35(4):47-50. http://d.old.wanfangdata.com.cn/Periodical/nfyjxyxb201404010
|
[2] |
邹国良, 吴一丁, 蔡嗣经.离子型稀土矿浸取工艺对资源、环境的影响[J].有色金属科学与工程, 2014, 5(2):100-106. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201402018
|
[3] |
罗嗣海, 黄群群, 王观石, 等.离子型稀土浸矿过程中渗透性变化规律的试验研究[J].有色金属科学与工程, 2014, 5(2):95-99. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201402017
|
[4] |
王海辉, 逄启寿, 郜飘飘.稀土电解槽温度场模拟分析与研究[J].稀有金属与硬质合金, 2017, 45(4):12-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsyyzhj201704003
|
[5] |
王亮, 逄启寿.稀土电解槽三维电场和温度场的分析研究[J].中国有色冶金, 2017, 12(6): 44-47. doi: 10.3969/j.issn.1672-6103.2017.06.012
|
[6] |
刘庆生, 王建鲁, 汤卫东.稀土铁合金电解槽电热场数值模拟[J].中国稀土学报, 2016, 34(4):444-452. http://www.cqvip.com/QK/90301X/201604/669800768.html
|
[7] |
刘宇新, 刘中兴, 杨立军.稀土电解槽气液两相流动数值模拟[J].有色金属(冶炼部分), 2011, 12(10):27-33. doi: 10.3969/j.issn.1007-7545.2011.10.008
|
[8] |
逄启寿, 罗桂平.立式稀土氟化炉热传导与内部气流规律研究[J].中国有色冶金, 2016, 6(1):41-45. doi: 10.3969/j.issn.1672-6103.2016.01.011
|
[9] |
伍永福, 官卜瑞, 刘中兴, 等.稀土电解槽电解效率优化数值模拟[J].有色金属(冶炼部分), 2015, 12(12):42-55. doi: 10.3969/j.issn.1007-7545.2015.12.011
|
[10] |
逄启寿, 王飞, 郜飘飘, 等. 8 kA稀土电解槽阴极对电场影响的数值模拟[J].机械设计与制造, 2016, 12(2):103-109. doi: 10.3969/j.issn.1001-3997.2016.02.027
|
[11] |
王海辉, 逄启寿, 郜飘飘.大电流稀土电解槽三维电场的数值仿真[J].中国稀土学报, 2017, 35(4):514-519. http://d.old.wanfangdata.com.cn/Periodical/zgxtxb201704011
|
[12] |
伍永福, 赵光磊, 刘中兴, 等.不同极间距下稀土电解槽内电-热场耦合数值模拟研究[J].中国稀土学报, 2017, 35(5):606-613. http://d.old.wanfangdata.com.cn/Periodical/zgxtxb201705007
|
[13] |
王海辉, 逄启寿.大电流稀土电解槽的优化分析[J].机械设计与制造, 2017, 12(9):77-79. doi: 10.3969/j.issn.1001-3997.2017.09.020
|
[14] |
逄启寿, 邹金萍, 郜飘飘.氟化炉氟化反应过程中气体流场的数值模拟[J].机械设计与制造, 2016, 12(3):111-113. doi: 10.3969/j.issn.1001-3997.2016.03.030
|
[15] |
冯羽生, 逄启寿, 许礼刚.不同阴阳极圆心距下稀土电解槽的电解特性分析[J].厦门大学学报, 2018, 6(4):581-586. http://d.old.wanfangdata.com.cn/Periodical/xmdxxb201804022
|
[16] |
龚姚腾, 周宏杰, 逄启寿, 等. 15 kA稀土电解槽阴阳极中心距对槽内电热场影响的模拟分析[J].稀有金属与硬质合金, 2018, 46(2): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsyyzhj201802001
|
[17] |
华园东.万安级稀土电解槽电场和流场模拟及开发设计[D].赣州: 江西理工大学, 2015. http://d.wanfangdata.com.cn/Thesis/D688358
|
[18] |
吴文元.稀土金属电解槽流场分析及开发设计[D].赣州: 江西理工大学, 2013. http://d.wanfangdata.com.cn/Thesis/D444378
|
[19] |
周雄军.8 kA稀土电解槽温度场模拟及温度控制[D].赣州: 江西理工大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10407-1015577728.htm
|
[20] |
郜飘飘.大电流稀土电解槽三维全槽仿真模拟与设计研究[D].赣州: 江西理工大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10407-1017111834.htm
|
[21] |
王海辉.10 kA稀土电解槽的设计[D].赣州: 江西理工大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10407-1018219928.htm
|
[22] |
王亮亮, 颜波, 刘木根.阳极结构调整对稀土电解槽的影响[J].中国稀土学报, 2015, 33(2):217-222. http://d.old.wanfangdata.com.cn/Periodical/zgxtxb201502012
|
[23] |
叶楠, 逄启寿, 张浩, 等.大电流稀土电解槽阳极结构研究[J/OL].中国稀土学报, http://kns.cnki.net/kcms/detail/11.2365.TG.20190313.1708.012.html.
|
[1] | WEN Tanggen, ZHANG Bin, ZHANG Jiawei, LI Mingzhou, YANG Shaohua. Numerical simulation of multiphase flow in 6 kA neodymium electrolytic cell[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 706-715. DOI: 10.13264/j.cnki.ysjskx.2023.05.014 |
[2] | PANG Qishou, XIN Zhilin, LIN Xiaocheng, GONG Yaoteng, WANG Zhiyang. Numerical simulation of the electrochemical 3D time-varying flow field in a rare earth electrolytic cell[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 152-158. DOI: 10.13264/j.cnki.ysjskx.2022.03.019 |
[3] | ZHANG Hong-liang, LIANG Jin-ding, XU Yu-jie, LI Jie. Simulation of strong coupling electromagnetic current in aluminum reduction cells and its application in new cathodes[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 26-33. DOI: 10.13264/j.cnki.ysjskx.2017.05.004 |
[4] | LI Mingzhou, HUANG Jindi, TONG Changren, ZHANG Wenhai, LI Junbiao, WANG Jinliang. Numerical analysis of thermal-electrical fields in copper electrolytic cell[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 50-55. DOI: 10.13264/j.cnki.ysjskx.2016.06.009 |
[5] | WANG Jinliang, YANG Yiqing. Analysis of the electric field in rare earth molten salt electrolytic cell based on Comsol[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 30-34. DOI: 10.13264/j.cnki.ysjskx.2016.06.006 |
[6] | CHEN Yan-xin, PENG Shao-hua, ZHOU Ai-guo. The application of small box-fastener in rare earth electrolysis[J]. Nonferrous Metals Science and Engineering, 2012, 3(1): 49-52. DOI: 10.13264/j.cnki.ysjskx.2012.01.020 |
[7] | XING Li, HE Jian-zhong, GAO De-jin, HANG Chang-qing, FENG Feng-ming, XING Hua. Development and Application of Pre-baked Anode Electrolytic Cell Clamping Conductive Fixture[J]. Nonferrous Metals Science and Engineering, 2010, 24(3-4): 164-169. |
[8] | DENG Zuo-min, LIN Ping, WANG Jun. The Study about the Relation between Rare-earth-melted-production's Various Factors and Output-rate[J]. Nonferrous Metals Science and Engineering, 2007, 21(3): 33-34,47. |
[9] | WANG Jun, DENG Zuo-min, ZHANG Xiao-lian. The Test Research on Energy Balance of10kA Fluoride System in RE Fused-salt Electrolysis Cell[J]. Nonferrous Metals Science and Engineering, 2004, 18(2): 30-32, 37. |
[10] | DENG Zou-min, ZHANG Xiao-lian, WAN Jun. Numerical Analysis of Temperature Field in RE Electrolysis Cell[J]. Nonferrous Metals Science and Engineering, 2004, 18(1): 26-27,34. |