Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
TIAN Yabin, DONG Quan, YE Changmei, HUANG Jingming, WANG Zhaowen, YANG Fengli, YANG Shaohua. Electrochemical reduction mechanism of NaCl-KCl-MgCl2 molten salt Mg2+ on tungsten electrode[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 13-18. DOI: 10.13264/j.cnki.ysjskx.2019.02.003
Citation: TIAN Yabin, DONG Quan, YE Changmei, HUANG Jingming, WANG Zhaowen, YANG Fengli, YANG Shaohua. Electrochemical reduction mechanism of NaCl-KCl-MgCl2 molten salt Mg2+ on tungsten electrode[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 13-18. DOI: 10.13264/j.cnki.ysjskx.2019.02.003

Electrochemical reduction mechanism of NaCl-KCl-MgCl2 molten salt Mg2+ on tungsten electrode

More Information
  • Received Date: February 26, 2019
  • Published Date: April 29, 2019
  • The electrochemical process of Mg2+ on the tungsten electrode in NaCl-KCl-MgCl2 molten salt was studied by the way of cyclic voltammetry, chronoamperometry and chronopotentiometry at 1 073 K, MgCl2 was used as raw materialusing, using three-electrode and NaCl-KCl molten salt system, All tests were done at the AUTOLAB electrochemical workstation. Cyclic voltammetry results displayed that the electrochemical reduction of Mg2+ on the tungsten electrode in the NaCl-KCl-MgCl2 molten salt system at 1 073 K was one-step reaction transfer 2 electrons process, the electrode reaction was controlled by diffusion, the diffusion coefficient was 3.81×10-6 cm2/s and the electrode reaction was Mg2++2e-→Mg. The correctness of the cyclic voltammetry test results was verified by the chronopotential test. The fitting results of chronoamperometry data displayed that the electrocrystallization of Mg2+ on the tungsten electrode in NaCl-KCl-MgCl2 molten salt at 1 073 K was just an instantaneous nucleation mode.
  • [1]
    BRAR H S, PLATT M O, SARNTINORANONT M, et al. Magnesium as a biodegrable and bioabsorbable material for medical implants[J]. Jom, 2009, 61(9):31-34. doi: 10.1007/s11837-009-0129-0
    [2]
    LI X J, XIE L, PAN F S, et al. A feasibility study of using biodegradable magnesium alloy in glaucoma drainage device[J]. International Journal of Ophthalmology, 2018, 11(1):135-142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0120180804419044
    [3]
    REN L, FAN L, ZHOU M, et al. Magnesium application in railway rolling stocks:a new challenge and opportunity for lightweighting[J]. International Journal of Lightweight Materials and Manufacture, 2018, 1(2):81-88. doi: 10.1016/j.ijlmm.2018.05.002
    [4]
    CHEN Y, XU Z, SMITH C, et al. Recent advances on the development of magnesium alloys for biodegradable implants[J]. Acta Biomaterialia, 2014, 10(11):4561-4573. doi: 10.1016/j.actbio.2014.07.005
    [5]
    CHEN J, TAN L, YU X, et al. Mechanical properties of magnesium alloys for medical application: a review[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 87:68-79. doi: 10.1016/j.jmbbm.2018.07.022
    [6]
    CHEN J, MA B, FENG S, et al. Preparation and application of 420 martensitic stainless steel wear resistant coating on magnesium alloy by cold spraying[J]. Surface Engineering, 2018, 34:1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/02670844.2018.1495416
    [7]
    韩继龙, 孙庆国.金属镁生产工艺进展[J].盐湖研究, 2008, 16(4):59-65. http://d.old.wanfangdata.com.cn/Periodical/yhyj200804012
    [8]
    TANG H, YAN Y D, ZHANG M L, et al. Electrochemistry of MgCl2 in LiCl-KCl eutectic melts[J]. Acta Physico-Chimica Sinica, 2013, 29(8):1698-1704. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201308013
    [9]
    杨少华, 赖晓晖, 王君, 等. LiF-MgF2-BaF2-KCl熔盐Mg2+在钨电极上的电化学还原机理[J].中国有色金属学报, 2016, 26(8):1811-1816. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201608023
    [10]
    WANG S, HAN W, ZHANG M, et al. Electrochemical behaviour of magnesium (Ⅱ) on Ni electrode in LiCl-KCl eutectic[J]. Chemical Research in Chinese Universities, 2018, 34(1):107-112. doi: 10.1007/s40242-018-7227-x
    [11]
    海显鹍, 张鸿娟, 徐文山, 等.氯化镁水合物脱水制取无水氯化镁的理论研究[J].轻工设计, 2011(5):9-10. http://d.old.wanfangdata.com.cn/Periodical/qgsj201105009
    [12]
    马芬兰.无水氯化镁的生产工艺探究[J].盐业与化工, 2017(8):20-22. http://d.old.wanfangdata.com.cn/Periodical/hhyyhg201708007
    [13]
    SU L L, LIU K, LIU Y L, et al. Electrochemical behaviors of Dy (Ⅲ) and its co-reduction with Al (Ⅲ) in molten LiCl-KCl salts[J]. Electrochimica Acta, 2014, 147:87-95. doi: 10.1016/j.electacta.2014.09.095
    [14]
    LIU K, LIU Y L, YUAN L Y, et al. Thermodynamic and electrochemical properties of holmium and HoxAly intermetallic compounds in the LiCl-KCl eutectic[J]. Electrochimica Acta, 2015, 174:15-25. doi: 10.1016/j.electacta.2015.05.161
    [15]
    ELIAZ N, GILEADI E. Physical electrochemistry:fundamentals, techniques and applications [M]. New Jersey:Wiley-Vch, 2018.
    [16]
    BARD A J, FAULKNER L R. Electrochemical fundamentals and applications(2nd Edition)[M].New York:John Wiley and Sons INC, 2003.
    [17]
    杨少华, 王君, 赖晓晖, 等. LiF-BaF2-LiCl熔盐体系中Li+的电化学行为[J].电化学, 2016(3):306-310. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhx201603011
    [18]
    杨少华, 林明, 刘增威, 等. LiF-CaF2-BaF2-ZrO2熔盐中Zr4+在钨电极上的电化学还原机理[J].有色金属科学与工程, 2017, 8(5):70-75. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2019020003
  • Cited by

    Periodical cited type(3)

    1. 张远景,刘兆庭,朱实贵,路贵民. LiCl-KCl-MgCl_2熔盐体系中Li-Mg共沉积机理研究. 有色金属科学与工程. 2023(03): 311-317 . 本站查看
    2. 卢精灵,徐存英,栗健茹,向琴琴,陈晓,华一新,张启波,李艳. Ni(Ⅱ)离子在两种离子液体中的电化学行为. 有色金属科学与工程. 2022(02): 1-9 . 本站查看
    3. 刘可心,王蕾,张海鸣,于洪杰,隋涛,金松哲. Cu/AlN/Cu梯度复合电极材料的制备及性能研究. 稀有金属. 2020(12): 1264-1270 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (149) PDF downloads (7) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return