Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHANG Yuanjing, LIU Zhaoting, ZHU Shigui, LU Guimin. Study on Li-Mg co-deposition mechanism in LiCl-KCl-MgCl2 melt[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 311-317. DOI: 10.13264/j.cnki.ysjskx.2023.03.003
Citation: ZHANG Yuanjing, LIU Zhaoting, ZHU Shigui, LU Guimin. Study on Li-Mg co-deposition mechanism in LiCl-KCl-MgCl2 melt[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 311-317. DOI: 10.13264/j.cnki.ysjskx.2023.03.003

Study on Li-Mg co-deposition mechanism in LiCl-KCl-MgCl2 melt

More Information
  • Received Date: May 25, 2022
  • Revised Date: June 13, 2022
  • Available Online: June 30, 2023
  • Li-Mg alloys, as cathode materials for lithium batteries, have broad application prospects in the field of new energy, and the preparation of Li-Mg alloys by molten salt electrolysis has great advantages. The electrochemical behavior of Mg2+ on a tungsten electrode in LiCl-KCl-MgCl2 melt and the Li-Mg co-deposition process were studied by a three-electrode system, respectively. The effect of MgCl2 concentration on electrolytic co-deposition of Li-Mg was also investigated. The experimental results of square wave voltammetry and timing current method show that the one-step two electrons reduction of Mg2+ to metallic Mg on the tungsten electrode is an instantaneous nucleation process, which is not affected by temperature. The results of the timing potentiometric experiment show that with the increasing concentration of MgCl2, the cathodic current density required for the electrolytic co-deposition of Li-Mg from LiCl-KCl-MgCl2 melt is gradually increased. When the MgCl2 concentration in the LiCl-KCl-MgCl2 melt is 5%, the minimum cathodic current density to achieve Li-Mg co-deposition is 0.287 A/cm2. The galvanostatic electrolysis results show that when the MgCl2 concentration is less than or equal to 5%, the metal Mg content in the Li-Mg product increases with MgCl2 concentration in the melt. When the MgCl2 concentration reaches 10%, electrolysis only obtains metal Mg.
  • [1]
    KRAUSKOPF T, MOGWITZ B, ROSENBACH C, et al. Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure[J]. Advanced Energy Materials, 2019, 9(44): 1902568. doi: 10.1002/aenm.201902568
    [2]
    YANG C P, XIE H, PING W W, et al. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries[J]. Advanced Materials, 2019, 31(3): 1804815. doi: 10.1002/adma.201804815
    [3]
    李晓琳, 杜洋, 涂继国, 等. NaCl-KCl熔盐中TiB2阳极溶解和电化学还原行为研究[J]. 江西冶金, 2021, 41(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYE202101001.htm
    [4]
    KONG L L, WANG L, NI Z C, et al. Lithium-magnesium alloy as a stable anode for lithium-sulfur battery[J]. Advanced Functional Materials, 2019, 29(13): 1808756. doi: 10.1002/adfm.201808756
    [5]
    OBROVAC M N, CHEVRIER V L. Alloy negative electrodes for Li-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11444-11502. doi: 10.1021/cr500207g
    [6]
    CHENG X, ZHANG R, ZHAO C, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. doi: 10.1021/acs.chemrev.7b00115
    [7]
    ZHAO M, BROUWER J C, SLOOF W G, et al. Surface segregation of ternary alloys: effect of the interaction between solute elements[J]. Advanced Materials Interfaces, 2020, 7(6): 1901784. doi: 10.1002/admi.201901784
    [8]
    SUI S, TAN H, CHEN J, et al. The influence of laves phases on the room temperature tensile properties of inconel 718 fabricated by powder feeding laser additive manufacturing[J]. Acta Materialia, 2019, 164: 413-427. doi: 10.1016/j.actamat.2018.10.032
    [9]
    ZHANG F, SHEN J, YAN X, et al. Homogenization heat treatment of 2099 Al-Li alloy[J]. Rare Metals, 2014, 33(1): 28-36. doi: 10.1007/s12598-013-0099-9
    [10]
    MOHAMEDI M, KAWAGUCHI N, SATO Y, et al. Electrochemical study of the mechanism of formation of the surface alloy of aluminum-niobium in LiCl-KCl eutectic melt[J]. Journal of Alloys and Compounds, 1999, 287(1/2): 91-97.
    [11]
    QIAO H, NOHIRA T, ITO Y. Electrochemical formation of Pd-La alloy films in a LiF-NaF-KF-LaF3 melt[J]. Journal of Alloys and Compounds, 2003, 359(1/2): 230-235.
    [12]
    YASUDA K, KONDO K, NOHIRA T, et al. Electrochemical pormation of Pr-Ni alloys in LiF-CaF2-PrF3 and NaCl-KCl-PrCl3 melts[J]. Journal of the Electrochemical Society, 2014, 161(7): D3097-D3104. doi: 10.1149/2.012407jes
    [13]
    康佳, 闫奇操, 于兵, 等. LaCl3-KCl熔盐体系物化性质研究[J]. 有色金属科学与工程, 2022, 13(3): 145-151. doi: 10.13264/j.cnki.ysjskx.2022.03.018
    [14]
    杨凤丽, 王浩然, 杨少华, 等. LiF-SrF2-SrO熔盐体系中Sr2+电化学行为的研究[J]. 有色金属科学与工程, 2016, 7(5): 33-36, 66. doi: 10.13264/j.cnki.ysjskx.2016.05.006
    [15]
    杨少华, 林明, 刘增威, 等. LiF-CaF2-BaF2-ZrO2熔盐中Zr4+在钨电极上的电化学还原机理[J]. 有色金属科学与工程, 2017, 8(5): 70-75. doi: 10.13264/j.cnki.ysjskx.2017.05.010
    [16]
    LIU Y L, YUAN L Y, YE G A, et al. Electrochemical extraction of samarium from LiCl-KCl melt by forming Sm-Zn alloys[J]. Electrochimica Acta, 2014, 120: 369-378. doi: 10.1016/j.electacta.2013.12.081
    [17]
    田亚斌, 董泉, 叶昌美, 等. NaCl-KCl-MgCl2熔盐Mg2+在钨电极上的电化学还原机理[J]. 有色金属科学与工程, 2019, 10(2): 13-18. doi: 10.13264/j.cnki.ysjskx.2019.02.003
    [18]
    LIU Z T, LU G M, YU J G. Electrochemical behavior of magnesium ions in chloride melt[J]. Ionics, 2019, 25(6): 2719-2727.
    [19]
    YONG D Y, ZHANG M L, HAN W, et al. Electrochemical formation of Mg-Li alloys at solid magnesium electrode from LiCl-KCl melts[J]. Electrochimica Acta, 2008, 53(8): 3323-3328.
    [20]
    TANG H, YAN Y D, ZHANG M L, et al. Electrochemistry of MgCl2 in LiCl-KCl eutectic melts[J]. Acta Physico-Chimica Sinica, 2013, 29(8): 1698-1704.
    [21]
    YONG D Y, ZHANG M L, XUE Y, et al. Study on the preparation of Mg-Li-Zn alloys by electrochemical codeposition from LiCl-KCl-MgCl2-ZnCl2 melts[J]. Electrochimica Acta, 2009, 54(12): 3387-3393.
    [22]
    LI S L, CHE Y S, LI C Y, et al. Study on the electrochemical behavior of Mg and Al ions in LiCl-KCl melt and preparation of Mg-Al alloy[J]. Journal of Magnesium and Alloys, 2020, 10(3): 721-729.
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012
    [3]YANG Xingyuan, CAI Yusheng, JIANG Muchi, REN Dechun, JI Haibin, LEI Jiafeng, XIAO Xuan. Influence of forging deformation on diffusion bonded TC4 titanium alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 527-535. DOI: 10.13264/j.cnki.ysjskx.2023.04.011
    [4]XIANG Ziqi, SHEN Huiyuan, HE Yang, SHENG Xiaofei, XIAO Zhu. Research on improving the corrosion resistance of conductive CuSn alloy for socket[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 76-82. DOI: 10.13264/j.cnki.ysjskx.2022.01.010
    [5]XIE Weicheng, TAO Li, ZHONG Minglong, LIU Renhui, NI Gang, HU Xianjun, ZHONG Zhenchen. Structure and magnetic properties of TbCu7-type SmCo7-xHfx alloys[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 101-105. DOI: 10.13264/j.cnki.ysjskx.2019.05.016
    [6]HUANG Jingming, WANG Zhaowen, LIU Zengwei, TIAN Yabin, YE Changmei, YANG Shaohua. Analysis of local corrosion of 7075 aluminum alloy by SECM[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 14-20. DOI: 10.13264/j.cnki.ysjskx.2019.03.003
    [7]ZHU Zhi-xun, LI Xin-ping, CHEN Cheng, LI Jian-ling. Effects of imino groups for the electrochemical properties of nickel complexes polymer with schiff base[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 8-13. DOI: 10.13264/j.cnki.ysjskx.2016.02.002
    [8]LIU Yi-zheng, YANG Cui-Yan, LIU Zhi-jie. Effects of Al-Si alloy structure heredity on 6 463 aluminum alloy containing silicon phase[J]. Nonferrous Metals Science and Engineering, 2013, 4(4): 81-84. DOI: 10.13264/j.cnki.ysjskx.2013.04.014
    [9]HE Fu-ping, LIU Feng, LI Jian-yun, ZHANG Jing-en, WANG Zhi-xiang. The effects of solution process and aging on Al-Mg-Si-Cu alloy's microstructure and properties[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 44-48. DOI: 10.13264/j.cnki.ysjskx.2013.01.013
    [10]ZHANG Ming-ming, WU Yu. On the aging behavior of Cu-Ni-Si-Zr alloy[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 12-16. DOI: 10.13264/j.cnki.ysjskx.2012.02.017
  • Cited by

    Periodical cited type(7)

    1. 蒋小康,高峰,周恒为. Y_2MgTiO_6∶Dy~(3+), Eu~(3+)荧光粉的发光性能及能量传递. 硅酸盐通报. 2025(01): 353-359 .
    2. 符彪,颜昊坤,李仁富,冯刘振,余依棋,廖金生. 稀土掺杂铌酸钆白光上转换发光材料的构筑与发光机理. 有色金属科学与工程. 2024(05): 774-780 . 本站查看
    3. 鞠泉浩,丁双双,李霜. 稀土离子Tm~(3+)掺杂MgAl_2O_4材料发光特性. 邵阳学院学报(自然科学版). 2024(06): 52-59 .
    4. 赵宇聪,张汝彬,王俊杰,龚国亮,黄建辉. 荧光粉Ca_3NbGa_3Si_2O_(14):Dy~(3+)/Tm~(3+)的制备及其发光性能的研究. 中国稀土学报. 2023(05): 853-861 .
    5. 蒋小康,张王曦月,高峰,周恒为. Dy~(3+)掺杂Y_2MgTiO_6荧光粉的制备及发光性质研究. 人工晶体学报. 2023(10): 1809-1815 .
    6. 蒋小康,高峰,尹红梅,周恒为. Sm~(3+)离子激活Y_2MgTiO_6橙红色荧光粉的制备及发光性质研究. 半导体光电. 2023(05): 703-708 .
    7. 房珍宇,杨丹,郑佑馗,朱静. 钠离子对KNa_4B_2P_3O_(13):Sm荧光粉发光性能的增强作用研究. 有色金属科学与工程. 2022(02): 123-130 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (177) PDF downloads (50) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return