Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WU Jianzhong, YANG Wensheng, GUO Hanjie, YU Mengxi, SHI Xiao, DUAN Shengchao. Comprehensive strengthening mechanism of DH36 high-strength ship plate steel[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 19-25. DOI: 10.13264/j.cnki.ysjskx.2017.04.004
Citation: WU Jianzhong, YANG Wensheng, GUO Hanjie, YU Mengxi, SHI Xiao, DUAN Shengchao. Comprehensive strengthening mechanism of DH36 high-strength ship plate steel[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 19-25. DOI: 10.13264/j.cnki.ysjskx.2017.04.004

Comprehensive strengthening mechanism of DH36 high-strength ship plate steel

More Information
  • Received Date: November 27, 2016
  • Published Date: August 30, 2017
  • DH36 steel is widely used in China currently as high strength hull structural steel. This paper adopts carbon replica, XRD diffraction, TEM observation and analysis method of controlled rolling and controlled cooling after the DH36 steel nano precipitates of type, morphology, size and number are analyzed in detail. The results show that the morphology of the precipitates in the microstructure of DH36 steel for the rules of the square, which is composed of (Ti, Nb) (C, N). The test of DH36 steel carbonitride precipitation volume fraction of the matrix is 0.00957%. The total contribution to the precipitation strengthening and fine grain strengthening is 211.24 MPa and 212.30 MPa Solid solution strengthening is 122.93 MPa and dislocation is 134.43 MPa.
  • [1]
    DEARDO A J. An investigation of the mechanism of splitting which occurs in tensile specimens of high strength low alloy steels[J]. Metallurgical and Materials Transactions A, 1977, 8(3): 473-486. doi: 10.1007/BF02661759
    [2]
    岳峰, 包燕平, 崔衡, 等. BOF-LF/VD-CC工艺生产高级船板钢纯净度的研究[J].北京科技大学学报, 2007, 29(增刊1): 1-5. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bjkd2007s1002&dbname=CJFD&dbcode=CJFQ
    [3]
    习小军, 赖朝彬, 吴春红, 等.大线能量焊接船板钢的研究现状与发展[J].有色金属科学与工程, 2016, 7(5): 55-60. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20160510
    [4]
    傅杰, 李光强, 于月光, 等.基于纳米铁碳析出物的钢综合强化机理[J].中国工程科学, 2011, 13(1): 31-42. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201101006.htm
    [5]
    杨王玥, 强文江.材料力学行为[M].北京:化学工业出版社, 2009.
    [6]
    PETCH N J. The cleavage strength of polycrystals[J]. Journal of the Iron and Steel Institute, 1953, 174: 25-28. http://www.oalib.com/references/7281308
    [7]
    PETCH N J. The ductile-brittle transition in the fracture of α-iron[J]. The Philosophical Magazine. 1958, 3(34): 1089-1097. doi: 10.1080/14786435808237038
    [8]
    雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社, 2006.
    [9]
    傅杰, 康永林, 柳得橹, 等. CSP工艺生产低碳钢中的纳米碳化物及其对钢的强化作用[J].北京科技大学学报, 2003, 25(4):328-331. http://www.cnki.com.cn/Article/CJFDTOTAL-BJKD200304009.htm
    [10]
    杜开平, 于月光, 傅杰, 等.超快速冷却条件下Ti微合金钢中纳米碳化物及其强化作用[J].有色金属科学与工程, 2016, 7(4): 27-32. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20160405
    [11]
    FU J, WU H J, LIU Y H, et al. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels[J]. Science in China Series E: Technological Sciences, 2007, 50(2): 166-176. doi: 10.1007/s11431-007-0008-2
    [12]
    MAO W W, NING A G, GUO H J. Nanoscale precipitates and comprehensive strengthening mechanism in AISI H13 steel[J]. International Journal of Minerals Metallurgy & Materials, 2016, 23(9): 1056-1064. doi: 10.1007/s12613-016-1323-z
    [13]
    宁安刚, 毛文文, 郭汉杰, 等. H13钢淬火态碳化物的析出行为及沉淀强化[J].过程工程学报, 2014, 14(6): 1041-1046. http://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ201406024.htm
    [14]
    宁安刚. 热作模具钢中纳米级析出物及钢的综合强化机理研究[D]. 北京: 北京科技大学, 2015. https://www.cnki.com.cn/lunwen-1015618177.html
    [15]
    LOU Y Z, LIU D L, NI X Q. Precipitates in steels with Ti additive produced by CSP process[J]. Journal of Iron and Steel Research, International, 2009, 16(4): 60-66. doi: 10.1016/S1006-706X(09)60062-5
    [16]
    徐洋. 钛微合金化钢中铁素体相变及纳米相析出行为与机理研究[D]. 辽宁: 东北大学, 2015. http://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201507011.htm
    [17]
    CHEN C Y, YEN H W, KAO F H, et al. Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides[J]. Materials Science and Engineering: A, 2009, 499(1): 162-166. http://www.sciencedirect.com/science/article/pii/S0921509308006400
    [18]
    FUNAKAWA Y, SHIOZAKI T, TOMITA K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides[J]. ISIJ International, 2004, 44(11): 1945-1951. doi: 10.2355/isijinternational.44.1945
    [19]
    NIEH T G, WADSWORTH J. Hall-Petch relation in nanocrystalline solids[J]. Scripta Metallurgica Et Materialia, 1991, 25(4): 955-958. doi: 10.1016/0956-716X(91)90256-Z
  • Related Articles

    [1]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [2]CHENG Qiuting, DENG Fei, CHEN Yanhong, XIA Yijiang, WANG Xiaojun. Numerical simulation analysis on the stability of mined-out area[J]. Nonferrous Metals Science and Engineering, 2015, (2): 85-88. DOI: 10.13264/j.cnki.ysjskx.2015.02.016
    [3]ZHAO Fei, ZHANG Yanling, ZHU Rong, ZHAO Shiqiang. Numerical simulation of effect of preheating temperature on supersonic oxygen jet characteristics[J]. Nonferrous Metals Science and Engineering, 2014, 5(6): 34-37. DOI: 10.13264/j.cnki.ysjskx.2014.06.006
    [4]ZHAO Kui, SHAO Hai, XU Feng, ZENG Peng, DENG Xiao-ping, WANG Ming. Numerical simulation of stability of mining of different mining entrances in a copper mine[J]. Nonferrous Metals Science and Engineering, 2013, 4(2): 46-50. DOI: 10.13264/j.cnki.ysjskx.2013.02.009
    [5]RAO Yun-zhang, XU Ling-bin. Copper mine numerical simulation study of the impact of reverse fault on the surrounding rock stability[J]. Nonferrous Metals Science and Engineering, 2012, 3(6): 55-60. DOI: 10.13264/j.cnki.ysjskx.2012.06.011
    [6]WU Chang-fu, TANG Min-bo, GU Peng, LIU Hou-ming. Numerical simulation on the partial ventilation in the single entry mine tunnel[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 71-73. DOI: 10.13264/j.cnki.ysjskx.2012.03.014
    [7]WU Hui, CAI Si-jing, WANG Zhang, CHEN Wu-jiu. Numerical simulation of ventilation network and its validation in Hemushan iron mine[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 60-65. DOI: 10.13264/j.cnki.ysjskx.2012.03.013
    [8]DENG Tong-fa, WU Zhou-ming, LUO Si-hai, GUI Yong. Numerical simulation for the effect of saturated soil with changing permeability coefficient under dynamic compaction[J]. Nonferrous Metals Science and Engineering, 2012, 3(1): 57-62. DOI: 10.13264/j.cnki.ysjskx.2012.01.002
    [9]SHI Fei, HE Jian. Numerical Simulation of Surface Movement in Insufficient Mining Region[J]. Nonferrous Metals Science and Engineering, 2007, 21(4): 16-17, 30.
    [10]CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17.

Catalog

    Article Metrics

    Article views (78) PDF downloads (5) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return