Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WU Jianzhong, YANG Wensheng, GUO Hanjie, YU Mengxi, SHI Xiao, DUAN Shengchao. Comprehensive strengthening mechanism of DH36 high-strength ship plate steel[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 19-25. DOI: 10.13264/j.cnki.ysjskx.2017.04.004
Citation: WU Jianzhong, YANG Wensheng, GUO Hanjie, YU Mengxi, SHI Xiao, DUAN Shengchao. Comprehensive strengthening mechanism of DH36 high-strength ship plate steel[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 19-25. DOI: 10.13264/j.cnki.ysjskx.2017.04.004

Comprehensive strengthening mechanism of DH36 high-strength ship plate steel

More Information
  • Received Date: November 27, 2016
  • Published Date: August 30, 2017
  • DH36 steel is widely used in China currently as high strength hull structural steel. This paper adopts carbon replica, XRD diffraction, TEM observation and analysis method of controlled rolling and controlled cooling after the DH36 steel nano precipitates of type, morphology, size and number are analyzed in detail. The results show that the morphology of the precipitates in the microstructure of DH36 steel for the rules of the square, which is composed of (Ti, Nb) (C, N). The test of DH36 steel carbonitride precipitation volume fraction of the matrix is 0.00957%. The total contribution to the precipitation strengthening and fine grain strengthening is 211.24 MPa and 212.30 MPa Solid solution strengthening is 122.93 MPa and dislocation is 134.43 MPa.
  • [1]
    DEARDO A J. An investigation of the mechanism of splitting which occurs in tensile specimens of high strength low alloy steels[J]. Metallurgical and Materials Transactions A, 1977, 8(3): 473-486. doi: 10.1007/BF02661759
    [2]
    岳峰, 包燕平, 崔衡, 等. BOF-LF/VD-CC工艺生产高级船板钢纯净度的研究[J].北京科技大学学报, 2007, 29(增刊1): 1-5. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bjkd2007s1002&dbname=CJFD&dbcode=CJFQ
    [3]
    习小军, 赖朝彬, 吴春红, 等.大线能量焊接船板钢的研究现状与发展[J].有色金属科学与工程, 2016, 7(5): 55-60. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20160510
    [4]
    傅杰, 李光强, 于月光, 等.基于纳米铁碳析出物的钢综合强化机理[J].中国工程科学, 2011, 13(1): 31-42. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201101006.htm
    [5]
    杨王玥, 强文江.材料力学行为[M].北京:化学工业出版社, 2009.
    [6]
    PETCH N J. The cleavage strength of polycrystals[J]. Journal of the Iron and Steel Institute, 1953, 174: 25-28. http://www.oalib.com/references/7281308
    [7]
    PETCH N J. The ductile-brittle transition in the fracture of α-iron[J]. The Philosophical Magazine. 1958, 3(34): 1089-1097. doi: 10.1080/14786435808237038
    [8]
    雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社, 2006.
    [9]
    傅杰, 康永林, 柳得橹, 等. CSP工艺生产低碳钢中的纳米碳化物及其对钢的强化作用[J].北京科技大学学报, 2003, 25(4):328-331. http://www.cnki.com.cn/Article/CJFDTOTAL-BJKD200304009.htm
    [10]
    杜开平, 于月光, 傅杰, 等.超快速冷却条件下Ti微合金钢中纳米碳化物及其强化作用[J].有色金属科学与工程, 2016, 7(4): 27-32. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20160405
    [11]
    FU J, WU H J, LIU Y H, et al. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels[J]. Science in China Series E: Technological Sciences, 2007, 50(2): 166-176. doi: 10.1007/s11431-007-0008-2
    [12]
    MAO W W, NING A G, GUO H J. Nanoscale precipitates and comprehensive strengthening mechanism in AISI H13 steel[J]. International Journal of Minerals Metallurgy & Materials, 2016, 23(9): 1056-1064. doi: 10.1007/s12613-016-1323-z
    [13]
    宁安刚, 毛文文, 郭汉杰, 等. H13钢淬火态碳化物的析出行为及沉淀强化[J].过程工程学报, 2014, 14(6): 1041-1046. http://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ201406024.htm
    [14]
    宁安刚. 热作模具钢中纳米级析出物及钢的综合强化机理研究[D]. 北京: 北京科技大学, 2015. https://www.cnki.com.cn/lunwen-1015618177.html
    [15]
    LOU Y Z, LIU D L, NI X Q. Precipitates in steels with Ti additive produced by CSP process[J]. Journal of Iron and Steel Research, International, 2009, 16(4): 60-66. doi: 10.1016/S1006-706X(09)60062-5
    [16]
    徐洋. 钛微合金化钢中铁素体相变及纳米相析出行为与机理研究[D]. 辽宁: 东北大学, 2015. http://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201507011.htm
    [17]
    CHEN C Y, YEN H W, KAO F H, et al. Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides[J]. Materials Science and Engineering: A, 2009, 499(1): 162-166. http://www.sciencedirect.com/science/article/pii/S0921509308006400
    [18]
    FUNAKAWA Y, SHIOZAKI T, TOMITA K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides[J]. ISIJ International, 2004, 44(11): 1945-1951. doi: 10.2355/isijinternational.44.1945
    [19]
    NIEH T G, WADSWORTH J. Hall-Petch relation in nanocrystalline solids[J]. Scripta Metallurgica Et Materialia, 1991, 25(4): 955-958. doi: 10.1016/0956-716X(91)90256-Z
  • Related Articles

    [1]WU Jianzhong, YANG Wensheng, GUO Hanjie, YU Mengxi, SHI Xiao, DUAN Shengchao. Effect of sulfur content fluctuation on mechanical properties of DH36 ship plate steel[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 22-28, 78. DOI: 10.13264/j.cnki.ysjskx.2017.03.004
    [2]LU Yang, GUO Zhancheng, GAO Jintao, ZHAO Shiqiang, DU Kaiping. Effect of rolling water cooling rate on nano-carbide precipitates and preciptation strengthening of Ti microalloyed steel[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 56-61. DOI: 10.13264/j.cnki.ysjskx.2016.06.010
    [3]DU Kaiping, YU Yueguang, ZHANG Shuting, WANG Zhaodong, FU Jie. Nano-carbide precipitates in Ti microalloyed steel under ultra fast cooling condition and their strengthening effect[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 27-32. DOI: 10.13264/j.cnki.ysjskx.2016.04.005
    [4]CHEN Chen, ZHOU Yulong, XIAO Weijing, WANG Xiaojun, FENG Xiao. Three axis strength of deformation characteristics of rock rheometer based on RTS-500[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 89-93. DOI: 10.13264/j.cnki.ysjskx.2016.03.016
    [5]LEI Facheng, ZHAO Yuncai. Feasibility analysis of selecting gearbox bearings indenter based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 116-120. DOI: 10.13264/j.cnki.ysjskx.2015.01.022
    [6]LI Sanhua, LEI Qian, LI Zhou, ZHANG Liang, WANG Mengying, LIU Huiqun. Micro-structures and properties of ultra-high strength Cu-Ni-Si-Mg-Cr alloy[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 35-38,78. DOI: 10.13264/j.cnki.ysjskx.2014.05.006
    [7]ZHANG Ming-ming, WU Yu. On the aging behavior of Cu-Ni-Si-Zr alloy[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 12-16. DOI: 10.13264/j.cnki.ysjskx.2012.02.017
    [8]ZHANG Feng-lin, ZHOU Nai-gen, ZHOU Lang. Effects of misfit characters on the structure and dislocation of two-dimensional misfit aluminium film[J]. Nonferrous Metals Science and Engineering, 2011, 2(5): 18-23.
    [9]ZHAO Yun-cai, LEI Fa-cheng. Strength Analysis of Ceramic Filter's Rotary Vacuum Based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 42-45.
    [10]LI Hua. SLon Centrifugal Concentrator Used in the Separation of Fine-grained Hematite[J]. Nonferrous Metals Science and Engineering, 2008, 22(4): 28-30.
  • Cited by

    Periodical cited type(3)

    1. 李云煜,刘春学. 基于收益途径的有色金属采矿权评估方法. 科技和产业. 2024(06): 125-131 .
    2. 杨海平,李慧. 国际能源投资项目基准收益率研究——基于CAPM模型. 山东工商学院学报. 2023(05): 99-105 .
    3. 黄苹苹. 折现率在矿业公司估值模型中的应用. 上海商业. 2023(12): 207-209 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (78) PDF downloads (5) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return