Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
SHAO Yajian, RAO Yunzhang, HE Shaobo. Three-dimensional modeling and reserve estimation of complex ore-body based on 3DMine[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 98-102. DOI: 10.13264/j.cnki.ysjskx.2016.04.017
Citation: SHAO Yajian, RAO Yunzhang, HE Shaobo. Three-dimensional modeling and reserve estimation of complex ore-body based on 3DMine[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 98-102. DOI: 10.13264/j.cnki.ysjskx.2016.04.017

Three-dimensional modeling and reserve estimation of complex ore-body based on 3DMine

More Information
  • Received Date: November 04, 2015
  • Published Date: August 30, 2016
  • One of the core tasks of digital mine is to build an integrated real three-dimensional model of the mine. The difficulty of the task is to set up a precise and complete three-dimensional geological model, namely underground ore-body modeling and reserve estimation. In order to establish three-dimensional model quickly, design mining and find out deposit reserves based on the model, a three-dimensional ore-body modeling and reserve estimation approach based on 3DMine software was proposed. Firstly, geological database and three-dimensional surface/ore-body model were established according to the existing geological information and drilling data. Secondly, the ore-body model was divided into the discrete block combination model, and the inverse distance weighted method was used to estimate mine resources reserves. The results show that the software can easily build real three-dimensional model, which will reflect the ore body shape , size and the spatial correlation of ore body and reserves blocks intuitively. It can also provide a platform for the mine designing and planning. Besides, compared with traditional geological block method, the inverse distance weighted method based on an unbiased estimate of the sample points is easier to achieve in software with more reliable result.
  • [1]
    吴立新, 汪云甲, 丁恩杰, 等. 三论数字矿山——借力物联网保障矿山安全与智能采矿[J]. 煤炭学报, 2012(3): 357-365. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201203002.htm
    [2]
    陈国旭, 吴冲龙, 张夏林, 等. 基于投影图的矿体三维可视化模型动态构建及资源储量评价[J]. 应用基础与工程科学学报, 2015(4):740-749. http://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201504009.htm
    [3]
    荆永滨, 王李管, 毕林, 等. 复杂矿体的块段模型建模算法[J]. 华中科技大学学报(自然科学版), 2010 (2): 97-100. http://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201002031.htm
    [4]
    杨成杰, 吴冲龙, 张夏林, 等. 基于实体与块体混合模型的三维矿体可视化建模技术[J]. 煤炭学报, 2012(4): 553-558. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201204005.htm
    [5]
    王运森, 闫腾飞, 安龙. 基于三维激光扫描的复杂空区点云处理技术研究[J]. 有色金属科学与工程, 2015, 6(2): 89-93. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201502017
    [6]
    余先川, 邓维科, 肖克炎, 等. 基于三维克立格方法的可视化储量估算[J]. 地学前缘, 2013(4): 320-331. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304033.htm
    [7]
    朱青凌, 罗周全, 刘晓明, 等. 块体模型储量估算原理的应用研究[J]. 矿冶工程, 2012(6): 9-13. http://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201206004.htm
    [8]
    王李管, 曾庆田, 贾明涛, 等. 复杂地质构造矿床三维可视化实体建模技术[J]. 金属矿山, 2006(12): 46-49. http://www.cnki.com.cn/Article/CJFDTOTAL-JSKS200612013.htm
    [9]
    李梅, 董平, 毛善君, 等. 地质矿山三维建模技术研究[J]. 煤炭科学技术, 2005, 53(4): 46-49.
    [10]
    吴健飞, 叶义成, 王其虎, 等. 某多层复杂矿床开采优化的三维地质建模[J]. 金属矿山, 2012(9): 24-128. http://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201209040.htm
    [11]
    李章林, 张夏林, 刘刚, 等. 距离幂次反比法参估样品数据的自动优化[J]. 地质科技情报, 2014(6): 209-212. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201406031.htm
    [12]
    LU G Y, WONG D W. An adapative inverse-distance weighting spatial interpolation technique[J]. Computer & Geosciences, 2008, 34(9): 1044-1055. http://cn.bing.com/academic/profile?id=2092981979&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    李章林, 王平, 张夏林. 距离幂次反比法的改进与应用[J]. 金属矿山, 2008(4): 88-92. http://www.cnki.com.cn/Article/CJFDTOTAL-JSKS200804024.htm
    [14]
    MUELLER T G, S R K, PUSULURI N B, et al. Optimizing inverse distance weighted interpolation with cross-validation[J]. Soil Science, 2005, 170(7): 504-515. doi: 10.1097/01.ss.0000175342.30164.89
    [15]
    王洪江, 杨柳华, 吴爱祥, 等. 基于块体模型的储量估算方法[J]. 有色金属(矿山部分), 2014(6): 87-91. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKU201406020.htm
    [16]
    余牛奔, 齐文涛, 王立欢, 等. 基于3DMine软件的三维地质建模及储量估算——以新疆巴里坤矿区某井田为例[J]. 金属矿山, 2015(3): 138-142. http://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201503033.htm
    [17]
    李章林, 张夏林. 距离平方反比法矿产资源储量计算模块设计与实现[J]. 地质与勘探, 2007(11): 92-97. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200706016.htm
  • Related Articles

    [1]MA Junqi, TAO Xingzhen, PENG Lin, XIE Yufei. Crack detection and recognition based on improved BiSeNetV2[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 91-97. DOI: 10.13264/j.cnki.ysjskx.2022.06.012
    [2]ZHAO Haibin, QIN Jing, LIU Defu, ZHANG Yinghui, WANG Zhigang. Effect of rare earth Yttrium on the tensile properties of 6.5%Si steel[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 131-140. DOI: 10.13264/j.cnki.ysjskx.2021.01.017
    [3]LIU Focai, LUO Ling, LI Dan, ZHONG Changming. Research on the short-range nitrification SBR process of low carbon ammonia nitrogen wastewater in rare earth mining area[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 112-118. DOI: 10.13264/j.cnki.ysjskx.2020.02.016
    [4]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [5]WANG Jinliang, YANG Yiqing. Analysis of the electric field in rare earth molten salt electrolytic cell based on Comsol[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 30-34. DOI: 10.13264/j.cnki.ysjskx.2016.06.006
    [6]DONG Piaoping, XIE Xinrong, LIANG Fuyong, ZOU Zhenggang, WEN Herui. Synthesis and application of lanthanide-based metal-organic frameworks[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 137-150. DOI: 10.13264/j.cnki.ysjskx.2016.03.024
    [7]LIU Zheng, BAI Guangzhu, LUO Haolin. Refining mechanism of rare earth Y on primary phase Mg2Si in-situ Mg2Si/Al composites[J]. Nonferrous Metals Science and Engineering, 2016, 7(1): 28-33. DOI: 10.13264/j.cnki.ysjskx.2016.01.007
    [8]SHI Wu-sui, LIN Da-jian. Construction of safety standardization for ionic rare earth smelting separation enterprises in Ganzhou[J]. Nonferrous Metals Science and Engineering, 2013, 4(6): 106-110. DOI: 10.13264/j.cnki.ysjskx.2013.06.017
    [9]LIU Ping, DONG Su-wei, LI An-yun, CHEN Jin-qing, CHEN Xing-bin, YAO Wen-li. The Applications of ICP-MS in Analyzing Rare Earth Elements[J]. Nonferrous Metals Science and Engineering, 2011, 2(3): 83-87.
    [10]WANG Jian-ru, LIU Zu-wen, ZHU Qiang, XU Jian-hong. On the Factors Affecting the Phosephorus and Nitrogen Removal by Carrousel Oxidation Ditch Process[J]. Nonferrous Metals Science and Engineering, 2011, 2(1): 51-54.

Catalog

    Article Metrics

    Article views (162) PDF downloads (21) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return