Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHANG Xuliang, LIU Zongqiang, YANG Jianying, YANG Jianguang, LI Junyuan, DENG Zixiang. Low-temperature smelting process of a bismuth-molybdenum ore[J]. Nonferrous Metals Science and Engineering, 2014, 5(3): 44-49. DOI: 10.13264/j.cnki.ysjskx.2014.03.008
Citation: ZHANG Xuliang, LIU Zongqiang, YANG Jianying, YANG Jianguang, LI Junyuan, DENG Zixiang. Low-temperature smelting process of a bismuth-molybdenum ore[J]. Nonferrous Metals Science and Engineering, 2014, 5(3): 44-49. DOI: 10.13264/j.cnki.ysjskx.2014.03.008

Low-temperature smelting process of a bismuth-molybdenum ore

More Information
  • Received Date: March 23, 2014
  • Published Date: June 29, 2014
  • In view of shortcomings in current bismuth-molybdenum ores' floating and smelting technologies, such as complex operation in ore-dressing, large consumption of floating reagents and incomplete separation of bismuth and molybdenum, a low-temperature smelting on bismuth-molybdenum ores is proposed so that the crude bismuth is produced after low-temperature smelting, and molybdenum comes into the solution in form of molybdate. Then molybdenum trioxide can be recycled which is produced by hydrothermal method. On the basis of thermodynamic analysis, effects of molten salt composition, salt amount, smelting temperature, reaction composition and excessive multiples of active carbon on the molten salt smelting of bismuth-molybdenum ores are investigated. The optimum conditions is determined as follows: w(NaCl) /w (NaCl+Na2CO3)=20 %, smelting temperature 850 ℃, w(NaCl+Na2CO3) /w(bismuth-molybdenum ores)=2, reaction time 1 h, w(activated carbon) /w(theory)=2. Two comprehensive tests under above-mentioned optimum conditions are conducted to find out that the direct recovery rate of bismuth is 98.12 % and 96.59 %, and the average grade of crude bismuth is 96.62 % and 98.87 %.
  • [1]
    汪立果.铋冶金[M].北京:冶金工业出版社, 1986: 15-31.
    [2]
    孙传尧, 程新朝, 李长根.钨铋相萤石复杂多金属矿综合选矿新技术--柿竹园法[J].中国钨业, 2004, 19 (5): 8-12. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGWQ200400001002.htm
    [3]
    周高云, 李晓东, 李绍民, 等.用新药剂提高柿竹园矿钼铋选矿指标的研究[J].有色金属(选矿部分), 2006 (5): 43-45. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXK200605011.htm
    [4]
    唐谟堂, 鲁君乐.由柿竹园高硅含铍含氟铋钼混合矿直接制取铋品[J].中南工业大学学报, 1995, 26 (2): 186-191. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD502.009.htm
    [5]
    Kim D, Wang S J. Bismuth recovery from hydrochloric acidsolution[J]. Canadian Metallurgical Quarterly, 2008, 47(3): 317-326. doi: 10.1179/cmq.2008.47.3.317
    [6]
    Zheng G Q, Tang M T. Physico-chemistry in distillation processof BiCl3-HC-lH2O system[J].Trans Nonferrous Met Soc China, 2002, 12 (5): 987-991.
    [7]
    Asahina S, Hosokura K, Hayashi T. Bismuthrecovety from copper smelting dust[J]. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1976 (2): 856-874. https://www.researchgate.net/publication/285002522_BISMUTH_RECOVERY_FROM_COPPER_SMELTING_DUST
    [8]
    唐朝波, 唐谟堂, 姚维义, 等.脆硫铅锑精矿短回转窑还原造锍熔炼半工业试验[J].矿冶工程, 2004, 4 (1): 51-53. http://www.cnki.com.cn/Article/CJFDTOTAL-KYGC200401015.htm
    [9]
    Margulis E V. Low temperature smelting of lead metallicscrap[J]. Erzmetall, 2000, 53 (2): 85-89. https://www.researchgate.net/publication/283821608_Low_temperature_smelting_of_lead_metallic_scrap
    [10]
    刘静欣, 田庆华, 程利振, 等.低温碱性熔炼在有色冶金中的应用[J].金属材料与冶金工程, 2012, 39 (6): 26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-HNYI201106007.htm
    [11]
    叶龙刚, 唐朝波, 唐谟堂, 等.硫化锑精矿低温熔炼新工艺[J].中南大学学报(自然科学版), 2012, 43 (9): 3338-3343 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201209004.htm
    [12]
    黄潮, 叶龙刚, 唐朝波, 等.脉石在硫化锑精矿低温熔炼过程中的行为[J].中南大学学报(自然科学版), 2012, 43 (11): 4178-4182. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201211004.htm
    [13]
    肖剑飞, 唐朝波, 唐谟堂, 等.硫化铋钼混合矿低温碱性熔炼新工艺研究[J].矿业工程, 2009, 29(5): 82-85. http://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201403009.htm
    [14]
    刘小文, 杨建广, 李静, 等. Bi2S3ZnONa2CO3体系热力学分析及应用[J].中国有色金属学报, 2012, 22 (1).: 310-314
    [15]
    傅从说.有色冶金原理[M].北京:冶金工业出版社, 1993: 160-163.
    [16]
    叶大伦.冶金热力学[M].长沙:中南工业大学出版社, 1987: 251.
    [17]
    叶大伦.实用无机物热力学数据手册[M].北京:冶金工业出版社, 1981.
  • Related Articles

    [1]HE Yunlong, XU Ruidong, HE Shiwei, ZHU Yun, SHEN Qingfeng, CHEN Hansen, LI Kuo. Research on bismuth extraction from alkaline oxidative leaching residues of bismuth-rich lead anode slime by casting and electrolysis[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 41-48. DOI: 10.13264/j.cnki.ysjskx.2019.01.007
    [2]ZHANG Zheqiu, YUAN Lucheng, HUANG Linqing, XU Zhifeng. Trend and recovery of arsenic, antimony and bismuth in copper smelting[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 13-19, 27. DOI: 10.13264/j.cnki.ysjskx.2019.01.003
    [3]GUO Xueyi, WANG Songsong, WANG Qinmeng, TIAN Qinghua. Development and application of oxygen bottom blowing copper smelting simulation software SKSSIM[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 1-6. DOI: 10.13264/j.cnki.ysjskx.2017.04.001
    [4]HUANG Xilin, LI Liangxing, HUANG Jindi, LIAO Chunfa, TONG Changren. Extraction performance of bismuth with N235 under Cl-assisted extraction[J]. Nonferrous Metals Science and Engineering, 2017, 8(2): 19-23. DOI: 10.13264/j.cnki.ysjskx.2017.02.004
    [5]LI Liyuan, NIE Qingmin, ZHONG Jianfeng, AI Guanghua. Experimental study on a high grade molybdenum-bismuth sulfide ore[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 85-90. DOI: 10.13264/j.cnki.ysjskx.2016.04.015
    [6]LUO Xuyan, ZHAO Dongfang, HUANG Ruiyu, ZHU Ting, DENG Jinmei, XIE Xiaohua. Research progress of modification and application of bismuth tungstate photocatalyst[J]. Nonferrous Metals Science and Engineering, 2015, 6(4): 21-26. DOI: 10.13264/j.cnki.ysjskx.2015.04.005
    [7]XIONG Li, YE Xue-jun, HU Cheng, LIU Zi-shuai, QIU Zhen-zhong. Sorting effects and mechanism of SA-3 on copper bismuth sulphide[J]. Nonferrous Metals Science and Engineering, 2011, 2(6): 83-85.
    [8]DAI Xian-ren, YAN Chuan-ming, XIAO Jin-xiong. On Comprehensive Dressing Recovery of Tungsten, Molybdenum and Bismuth[J]. Nonferrous Metals Science and Engineering, 2008, 22(4): 16-18.
    [9]XU Jing-guang, OU Li-ling. Spectrophotometric Determination of Copper-bismuth Phosphate Ore in Arsenic[J]. Nonferrous Metals Science and Engineering, 2008, 22(1): 41-42.
    [10]HU Shao_hua. Practice and Process of Treating High Bismuth Copper Anode Slime[J]. Nonferrous Metals Science and Engineering, 2003, 17(3): 31-33.
  • Cited by

    Periodical cited type(2)

    1. 黄明发. 富水环境缓倾斜矿体采矿方法与突水防控研究. 中国矿山工程. 2024(06): 34-41 .
    2. 范国栋,李博涵. 基于机器学习的工业机械设备故障预测方法. 自动化与信息工程. 2023(04): 13-18+50 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (70) PDF downloads (6) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return