Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
HUANG Zhi-hui, LU Chun-yan, SHEN Guohua, XIE Yong, JIN Jie-fang. Acoustic emission characteristics analysis of sandstone under uniaxial compression[J]. Nonferrous Metals Science and Engineering, 2014, 5(1): 91-94. DOI: 10.13264/j.cnki.ysjskx.2014.01.018
Citation: HUANG Zhi-hui, LU Chun-yan, SHEN Guohua, XIE Yong, JIN Jie-fang. Acoustic emission characteristics analysis of sandstone under uniaxial compression[J]. Nonferrous Metals Science and Engineering, 2014, 5(1): 91-94. DOI: 10.13264/j.cnki.ysjskx.2014.01.018

Acoustic emission characteristics analysis of sandstone under uniaxial compression

More Information
  • Received Date: September 25, 2013
  • Published Date: February 27, 2014
  • Through the acoustic emission experiment of sandstone under uniaxial load,we reorded the AE(Acoustic Emission) signals of sandstone in various deformation phase. Obtained the curves of stress-time-ring accumulative count,stress-time-AE rates. Based on the stress -strain curve,analysed the characteristic parameters of AE in the whole failure process,Through the FFT(Fast Fourieer Transform),analysed the amplitude spectrum of 110 AE events choosed by time sequence,retained the dominant frequency of AE signals,and analysed the changes of the dominant frequency with stress. The results showed that the dominant frequency changed randomly when the stress level not more than 50% of the peak stress,subsequently,the dominant frequency had the trend to be the low frequency,what's more,the dominant frequency mainly ranged 140 kHz to 180 kHz.
  • [1]
    杨明纬.声发射检测[M].北京:机械工业出版社,2005
    [2]
    马孝春.岩石切削中的声发射研究[J].岩石力学与工程学报,1996,15(1):77-83. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX601.010.htm
    [3]
    姜永东,鲜学福,许江.岩石声发射Kaiser效应应用于地应力测试的研究[J].岩土力学,2005,26(6):946-950. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200506027.htm
    [4]
    傅鹤林.岩石声发射的Kaiser效应及其在地应力场测试中的应用[J].化工矿物与加工,2002(5):20-22. http://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ200205007.htm
    [5]
    周小平,邓梦,章福主.声发射凯塞效应结合岩体结构分析测量地应力的新进展[J].重庆建筑大学学报,2001,23(6):109-113. http://www.cnki.com.cn/Article/CJFDTOTAL-JIAN200106022.htm
    [6]
    王晓军,赵康,钟春辉.点荷载下岩石记忆效应的声发射数值模拟试验研究[J].江西理工大学学报,2009,30(6):11-13. http://www.cnki.com.cn/Article/CJFDTOTAL-NFYX200906006.htm
    [7]
    陈强,朱宝龙,胡厚田.岩石Kaiser效应测定地应力场的试验研究[J].岩石力学与工程学报,2006,25(7):1370-1376. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200607010.htm
    [8]
    包春燕,姜谙男,唐春安,等.单轴加卸载扰动下石灰岩声发射特性研究[J].岩石力学与工程学报,2011,30(s2):3871-3877. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2067.htm
    [9]
    Borisov V D.Time and spectrum analysis to study rock failure mechanics[J].Journal of Mining Science,2005,41(4):332-341. doi: 10.1007/s10913-005-0098-9
    [10]
    施克仁.无损检测新技术[M].北京:清华大学出版社,2007:53-106.
    [11]
    张茹,谢和平,刘建峰,等,单轴多级加载岩石破坏声发射特性试验研究[J].岩石力学与工程学报,2006,25(12):2584-2588.
    [12]
    姜永东,鲜学福,尹光志,等.岩石应力应变全过程的声发射及分形与混沌特征[J].岩土力学,2010,31(8):2043-2418. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201008011.htm
    [13]
    刘新平.单轴压缩条件下岩石样品声发射信号的频谱析[J].声学学报,1986,11(2):80-87. http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA198602002.htm
    [14]
    陶纪南.岩石破坏过程声发射特征参数的研究[J].岩石力学与工程学报,1996,15(5):452-455. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX6S1.006.htm
    [15]
    张艳博,黄晓红,李莎莎,等.含水砂岩在破坏过程中的频谱特性分析[J].岩土力学,2013,34(6):1574-1578. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306010.htm
  • Related Articles

    [1]ZHU Ningyuan, CHEN Qiuming, CHEN Shihao, ZUO Shoubin. Study on high-temperature constitutive model of TC11 titanium alloy dynamic recovery and dynamic recrystallization[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 58-66. DOI: 10.13264/j.cnki.ysjskx.2024.01.008
    [2]LI Man, XUE Qingguo, She Xuefeng, WANG Guang, Liu Yingli, WANG Jingsong. An experimental study on gasification of different optical texture of coke by alkali metal (K)[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 9-14. DOI: 10.13264/j.cnki.ysjskx.2018.01.002
    [3]HUANG Weilinga, JIANG Yingguob, WANG Zhongfenga. Design of pH value control system for NdFeB waste leaching[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 112-116. DOI: 10.13264/j.cnki.ysjskx.2017.06.018
    [4]LIU Fuwen, LU Yanqiu, YAN Qun. Degradation of bisphenol A in water by NiO catalytic ozonation[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 103-107. DOI: 10.13264/j.cnki.ysjskx.2017.03.018
    [5]XIONG Changshi, CHEN Yunnen, DAI Zhenpeng. Modification of spent grains to improve acid turquoise blue A adsorption from wastewater[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 116-120. DOI: 10.13264/j.cnki.ysjskx.2015.06.021
    [6]LIU Zheng, ZHANG Jiayi, DENG Keyue. Numerical simulation of aluminum molten liquid and its particle trajectories in electromagnetic field based on Fluent[J]. Nonferrous Metals Science and Engineering, 2015, 6(4): 46-51. DOI: 10.13264/j.cnki.ysjskx.2015.04.010
    [7]ZHAO Fei, CHEN Zhiyuan, CHEN Hongzhi, ZHAO Shiqiang. Prediction of the density of molten MgCl2-KCl-CaCl2 ternary at 1 090 K[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 44-48. DOI: 10.13264/j.cnki.ysjskx.2014.04.009
    [8]LIU Zheng, HUANG Mei-yan, KE Ting-ting. Research of rare earth La on refining mechanism of primary α phase in semisolid A356 alloy[J]. Nonferrous Metals Science and Engineering, 2011, 2(5): 24-28.
    [9]WANG You-bin, PAN Jie-hua, HU Zhi-liu, ZENG Jian-min. The Influences of SDAS on Aging Kinetics of A357 Alloy[J]. Nonferrous Metals Science and Engineering, 2010, 1(02): 30-33.
    [10]HU Jun-hua, CHEN Li-an. Analyzing and Controlling Methods of TKPH Values of Dynamic Truck Tyre[J]. Nonferrous Metals Science and Engineering, 2003, 17(2): 43-44.

Catalog

    Article Metrics

    Article views (91) PDF downloads (4) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return