Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
MIN Xiao-bo, CHEN Jie, LIANG Yan-jie, CHAI Li-yuan, ZHANG Hai-jing, KE Yong, WANG Yan. Recovery of zinc from sludge by a combination of hydrothermal sulfidation and flotation[J]. Nonferrous Metals Science and Engineering, 2013, 4(6): 1-7. DOI: 10.13264/j.cnki.ysjskx.2013.06.011
Citation: MIN Xiao-bo, CHEN Jie, LIANG Yan-jie, CHAI Li-yuan, ZHANG Hai-jing, KE Yong, WANG Yan. Recovery of zinc from sludge by a combination of hydrothermal sulfidation and flotation[J]. Nonferrous Metals Science and Engineering, 2013, 4(6): 1-7. DOI: 10.13264/j.cnki.ysjskx.2013.06.011

Recovery of zinc from sludge by a combination of hydrothermal sulfidation and flotation

More Information
  • Received Date: September 22, 2013
  • Published Date: December 30, 2013
  • The paper describes the application of hydrothermal sulfidation and flotation for the metal recovery from the sludge which is produced after the metallurgical waste water treatment. Experiment is carried out to investigate the influencing factors of hydrothermal sulfidation by orthogonal experimentation. The result shows that temperature is the most significant factor on the sulfidation of Zn, followed by solid -to -liquid ratio, reaction time and reagent dosage of sulfur. The optimum operating process parameters are established as follows: reaction time (4 h); temperature (200 °C); solid-to-liquid ratio(3∶1);the reagent dosage of sulfur (18 %). Under these experimental conditions, the sulfidation extent of zinc is greater than 90 %. The subsequent flotation investigates the effects of particle size, depressant dosage (CMC), temperature and pH value on the flotabilities of synthetic ZnS. The results indicate that temperature is the major factor to influence the flotation. Under the optimal conditions (particle size: 38 μm, temperature: 60 ℃, CMC: 200 g/t and pH value: 8), the grade of zinc concentrate can reach 28.8 % with recovery efficiency of 55.16 % in one roughing stage .
  • [1]
    刘清, 招国栋, 赵由才. 有色冶金废渣中有价金属回收的技术及现状[J]. 有色冶金设计与研究, 2007, 23(28):22-26. http://www.cnki.com.cn/Article/CJFDTOTAL-YSYJ2007Z1005.htm
    [2]
    D Kuchar, T Fukuta, MS Onyango, et al. Sulfidation treatment of copper-containing plating sludge towards copper resource recovery[J]. Journal of Hazardous Materials, 2006, 138(1):86-94. doi: 10.1016/j.jhazmat.2006.05.037
    [3]
    D Kuchar, T Fukuta, MS Onyango, et al. Sulfidation of zinc plating sludge with Na2S for zinc resource recovery[J]. Journal of Hazardous Materials, 2006, 137(1):185-191. doi: 10.1016/j.jhazmat.2006.01.052
    [4]
    LI Yong, WANG Ji-kun, WEI Chang, et al. Sulfidation roasting of low grade lead-zinc oxide ore with elemental sulfur[J]. Minerals Engineering, 2010, 23(7):563-566. doi: 10.1016/j.mineng.2010.01.004
    [5]
    F Rashchi, A Dashti. Anglesite flotation:a study for lead recovery from zinc leach residue[J]. Minerals Engineering, 2005, 18(2):205-212. doi: 10.1016/j.mineng.2004.10.014
    [6]
    FA Ke qing, MILLER Jan, JIANG Tao, et al. Sulphidization flotation for recovery of lead and zinc from oxide-sulfide ores[J]. Transactions of Nonferrous Metals Society of China, 2005, 15(5):1138-1144.
    [7]
    Vanthuyne, M A Maes. The removal of heavy metals from contaminated soil by a combination of sulfidisation and flotation[J]. Science of the Total Environment, 2002, 269(1/3):69-80. http://cn.bing.com/academic/profile?id=bf00857c3227e05f62ea83467bf264e4&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    印万忠, 孙传尧. 矿物晶体结构与表面特性和可浮性关系的研究[J]. 国外金属矿选矿, 1998(4):8-11. http://www.cnki.com.cn/Article/CJFDTOTAL-JSXK199804002.htm
    [9]
    Masoud Salavati-Niasari, MRL-E, Fatemeh Davarb. Controllable synthesis of wurtzite ZnS nanorods through simple hydrothermal method in the presence of thioglycolic acid[J]. Journal of Alloys and Compounds, 2009, 475(1/2):782-788.
    [10]
    K Byrappa a, T Adschiri. Hydrothermal technology for nanotechnology[J]. Progress in Crystal Growth and Characterization of Materials, 2007, 53(2):117-166. doi: 10.1016/j.pcrysgrow.2007.04.001
    [11]
    CHENG Zhi-guo, SI Da-jie, GENG Bao-you. Controlled synthesis of copper sulfide 3D nanoarchitectures through a facile hydrothermal route[J]. Journal of Alloys and Compounds, 2010, 492(1/2):44-49.
    [12]
    张惠斌. 矿石和工业产品化学物相分析[M]. 北京:冶金工业出版社, 1992.
    [13]
    张海静. 含锌中和渣的水热硫化及可浮性研究[D]. 长沙:中南大学, 2012.
    [14]
    胡熙庚, 黄和慰, 毛钜凡. 浮选理论与工艺[M]. 长沙:中南工业大学出版社, 1990.
    [15]
    起冰翠, 薛玉兰. 羧甲基纤维素CMC对石膏及氢氧化锌浮选性质影响的机理研究[J]. 国外金属矿选矿, 1996(5):25-27. http://www.cnki.com.cn/Article/CJFDTOTAL-JSXK199605005.htm

Catalog

    Article Metrics

    Article views (54) PDF downloads (9) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return