Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
XU Zhi-feng, HU Xiao-gang, LI Qiang, WANG Cheng-yan. Pressure Leaching Kinetics of Microwave-activated Copper Sulfide Concentrate[J]. Nonferrous Metals Science and Engineering, 2011, 2(2): 19-23. DOI: 10.13264/j.cnki.ysjskx.2011.02.017
Citation: XU Zhi-feng, HU Xiao-gang, LI Qiang, WANG Cheng-yan. Pressure Leaching Kinetics of Microwave-activated Copper Sulfide Concentrate[J]. Nonferrous Metals Science and Engineering, 2011, 2(2): 19-23. DOI: 10.13264/j.cnki.ysjskx.2011.02.017

Pressure Leaching Kinetics of Microwave-activated Copper Sulfide Concentrate

More Information
  • Received Date: December 30, 2010
  • Published Date: April 29, 2011
  • The pressure leaching kinetics of microwave-activated copper sulfide concentrate is studied and further compared with that of the pretreated concentrate in the following conditions:the leaching temperature is from 408 K to 453 K; the initial sulfuric acid concentration is 1.23 mol/L; the ratio of liquid to solid as 30/1(mL/g); the oxygen partial pressure is 0.6 MPa; the agitation speed is 500 r/min.The results show that the leaching behaviors of both copper and zinc are similar to those of the pretreated concentrate.The leaching rate of copper is also approximate to that of the pretreated concentrate in the range of leaching temperature from 408 K to 438 K.When the leaching temperature is heated to 453 K, the leaching rate of copper is slightly higher than that of the pretreated concentrate. When the leaching temperature is lower than 423 K, the leaching rate of zinc is slightly higher than that of the pretreated concentrate.However, the leaching of zinc is slowed while the leaching temperature is higher than 438 K. The apparent activation energy is determined as 56.33 kJ/mol and 49.77 kJ/mol for the leaching of copper and zinc respectively.The leaching of both copper and zinc for microwave-activated concentrate follows the shrinking core model with surface reaction control.The leaching of both copper and zinc is promoted after the copper concentrate is pretreated by microwave activation.
  • [1]
    邱定蕃.加压湿法冶金过程化学与工业实践[J].矿冶, 1994, 3(4):55-67. http://www.cqvip.com/QK/97765A/199404/1419296.html
    [2]
    Habashi F.Pressure Hydrometallurgy/Past, Present and Future[C]//Yang Xianwan.Proceedings of the Third International Conference on Hydrometallurgy'98.Kunming, China:International Academic Publishers, 1998:27-34. http://www.academia.edu/22324769/Hydrometallurgy_in_the_Past_Decades._A_Personal_View
    [3]
    王海北, 蒋开喜, 邱定蕃, 等.国内外硫化铜矿湿法冶金发展现状[J].有色金属, 2003, 55(4):101-104. http://www.wenkuxiazai.com/doc/84061c787fd5360cba1adbb4.html
    [4]
    郭亚惠.铜湿法冶金现状及未来发展方向[J].中国有色冶金, 2006, (4):1-13. http://www.wenkuxiazai.com/doc/95d71deeaeaad1f346933f01-3.html
    [5]
    Hackl R P, Dreisinger D B, Peters E, et al.Passivation of Chalcopyrite during Oxidative Leaching in Sulfate Media[J].Hydrometallurgy, 1995, 39(1-3):25-48. doi: 10.1016/0304-386X(95)00023-A
    [6]
    Jacobs I S, Zavitsnos P D.Microwave Handling of Mineral [J].J ApplPhys, 1982, 53(3):2730-2735. doi: 10.1063/1.330949
    [7]
    张文朴.微波在稀贵金属冶金中的应用研究进展[J].稀有金属与硬质合金, 2008, 36(2):49-53. https://www.wenkuxiazai.com/doc/e4e774651ed9ad51f01df2d0...
    [8]
    Hall S T, Finch J A.New Use of Microwave [J].Miner Metall Process, 1984, (11):179-183.
    [9]
    Standish N, Worner H.Microwave Handling of Iron Ore Powder [J].Microwave Power and Electromagnetic Energy, 1990, 25(3):177-180. doi: 10.1080/08327823.1990.11688126
    [10]
    Haque K E.Microwave Energy for Mineral Treatment Process A Brief Review [J].Int J Miner Process, 1999, 57(1):1-24. doi: 10.1016/S0301-7516(99)00009-5
    [11]
    Chen T T.The Relative Transparency of Minerals to Microwave Radiation [J].Can Metall Q, 1984, 23(1):349-351. https://www.researchgate.net/publication/233633420_The_Relative...
    [12]
    段爱红.晶体结构缺陷结构与物质吸收微波的能力[J].云南师范大学学报, 1998, 18(3):89-91. http://www.cqvip.com/QK/91650X/199803/3216789.html
    [13]
    崔礼生, 韩跃新.微波技术在选矿中的应用[J].金属矿山, 2006, (4):29-32. http://www.wenkuxiazai.com/doc/e18e71c9c1c708a1294a4403.html
    [14]
    徐志峰, 李强, 王成彦.复杂硫化铜精矿微波活化预处理-加压浸出工艺[J].过程工程学报, 2010, 10(2):256-262. https://www.researchgate.net/profile/Cheng_Yan_Wang/...
    [15]
    徐志峰, 严康, 李强, 等.复杂硫化铜精矿加压浸出动力学[J].有色金属, 2010, 62(4), 76-81, 114. http://www.cqvip.com/QK/98519X/201004/35624024.html
    [16]
    华一新.冶金过程动力学导论[M].北京:冶金工业出版社, 2004:28, 188.
  • Related Articles

    [1]YU Weijian, GUAN Qingjun, SUI Ying, ZHANG Fang. Leaching kinetics of rare earth elements from phosphogypsum with sulfuric acid[J]. Nonferrous Metals Science and Engineering, 2021, 12(5): 110-118. DOI: 10.13264/j.cnki.ysjskx.2021.05.014
    [2]ZHANG Quankuang, MA Baozhong, WANG Chengyan, CHEN Yongqiang. On the alkali leaching kinetics of rubidium ore quenching slag in molten water[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 1-8. DOI: 10.13264/j.cnki.ysjskx.2021.04.001
    [3]XUE Xiang, ZHANG Xinying, YANG Liang. Kinetics study of leaching calcium fluoride with sodium phosphate and sodium hydroxide[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 8-12. DOI: 10.13264/j.cnki.ysjskx.2021.01.002
    [4]ZHANG Hao, WANG Guang, ZHANG Shihan, WANG Jingsong, XUE Qingguo. Direct reduction kinetics of copper slag[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 28-33. DOI: 10.13264/j.cnki.ysjskx.2019.01.005
    [5]SONG Hanlin, JIANG Pingguo, LIU Wenjie, WANG Zhengbing. Research progress on hydrogen reduction kinetics of tungsten oxide[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 64-69. DOI: 10.13264/j.cnki.ysjskx.2017.05.009
    [6]TANG Weidong, ZHU Weiwei, JIANG Pingguo, JING Qingxiu. Kinetics of chlorination process of copper oxide[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 46-50. DOI: 10.13264/j.cnki.ysjskx.2017.01.008
    [7]YAN Faming, AI Guanghua, WU Caibin, LI Xiaodong, SHI Zhizhong, MAO Wenming. On the grinding kinetics of tungsten ores[J]. Nonferrous Metals Science and Engineering, 2015, 6(4): 81-85, 120. DOI: 10.13264/j.cnki.ysjskx.2015.04.017
    [8]XIA Qing, YUE Tao. The research progress of flotation kinetics[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 46-51. DOI: 10.13264/j.cnki.ysjskx.2012.02.010
    [9]NIE Jin-xia, HEN Yun-ren, CHEN Ming CHEN Ming. Thermodynamics and Kinetics of Copper Sorption by Rice Bran[J]. Nonferrous Metals Science and Engineering, 2008, 22(4): 35-38.
    [10]ZHAO Zhong-wei, JIA Xi-jun, CHEN Ai-liang, LONG Shuang, HUO Guang-sheng, LI Hong-gui. Leaching Silicon Kinetics of Zinc Oxide Ore Leached with Alkali[J]. Nonferrous Metals Science and Engineering, 2008, 22(4): 31-34.

Catalog

    Article Metrics

    Article views (59) PDF downloads (7) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return