Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHANG Quankuang, MA Baozhong, WANG Chengyan, CHEN Yongqiang. On the alkali leaching kinetics of rubidium ore quenching slag in molten water[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 1-8. DOI: 10.13264/j.cnki.ysjskx.2021.04.001
Citation: ZHANG Quankuang, MA Baozhong, WANG Chengyan, CHEN Yongqiang. On the alkali leaching kinetics of rubidium ore quenching slag in molten water[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 1-8. DOI: 10.13264/j.cnki.ysjskx.2021.04.001

On the alkali leaching kinetics of rubidium ore quenching slag in molten water

More Information
  • Received Date: March 30, 2021
  • Published Date: August 30, 2021
  • With the development and application of rubidium and its compounds in emerging fields in recent years, the market for rubidium has found an ever-increasing expansion. At present, rubidium ores are treated by acid method, alkali method and acid-base combination method. However, most of these technologies have disadvantages of large acid-alkali consumption, low leaching efficiency and inefficient resource utilization. To solve these defects of the existing technology, we propose a new technology for the treatment of rubidium ores, molten water quenching plus alkali immersion. Through molten water quenching, the stable silicon-oxygen tetrahedral structure in rubidium ore is destroyed. Thus, water quenching slag exists in a highly active state. For the target of clarifying the leaching activity of water-quenched slag, the shrinkage core model was used to study the influence of leaching temperature and water-quenched slag particle size on the leaching effect of rubidium. The results show: compared to the traditional alkali treatment of rubidium ores, melt water quenching-alkali leaching method achieves high efficient leaching of rubidium at low temperatures and low alk ali concentrations. The apparent activation energy of the alkali leaching reaction is 37.41 kJ/mol. The alkali leaching process of water quenched slag accords with the mixed control model, and the leached slag is analcime.
  • [1]
    董普, 肖荣阁. 铯盐应用及铯(碱金属)矿产资源评价[J]. 中国矿业, 2005, 14(2): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA200502009.htm
    [2]
    曾媛, 赵峰, 吴汉华, 等. 气泡型铷原子频标光谱灯优化设计[J]. 波谱学杂志, 2004, 21(3): 345-350. doi: 10.3969/j.issn.1000-4556.2004.03.011
    [3]
    陈辰, 赵伟, 白丽娜, 等. 从国外典型星载铷原子频标看其技术发展[J]. 宇航计测技术, 2001, 21(3): 60-64. doi: 10.3969/j.issn.1000-7202.2001.03.010
    [4]
    孙艳, 王瑞江, 亓锋, 等. 世界铷资源现状及我国铷开发利用建议[J]. 中国矿业, 2013, 22(9): 11-13. doi: 10.3969/j.issn.1004-4051.2013.09.003
    [5]
    WANG S, MA R, WANG C, et al. Incorporation of Rb cations into Cu2FeSnS4 thin films improves structure and morphology[J]. Materials Letters, 2017, 202(1): 36-38. http://www.sciencedirect.com/science/article/pii/S0167577X17308133
    [6]
    SALIBA M, MATSUI T, DOMANSKI K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance[J]. Science, 2016, 63(9): 206-209. http://europepmc.org/abstract/med/27708053
    [7]
    HARIKESH P C, MULMUDI H K, GHOSH B, et al. Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics[J]. Chemistry of Materials, 2016, 28: 7496-7504. doi: 10.1021/acs.chemmater.6b03310
    [8]
    冯光熙. 无机化学丛书. 第一卷, 稀有气体、氢、碱金属[M]. 北京: 科学出版社, 2011.
    [9]
    王晨雪. 铷铯资源开发利用浅析[J]. 新疆有色金属, 2017, 40(6): 55-56. https://www.cnki.com.cn/Article/CJFDTOTAL-XJYS201706021.htm
    [10]
    杨少华, 赖晓晖, 王君, 等. t-BAMBP萃取分离高钾钠卤水中的铷工艺研究[J]. 有色金属科学与工程, 2015, 6(5): 17-21. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201505004
    [11]
    JANDOVA J, DVORAK P, FORMANEK J, et al. Recovery of rubidium and potassium alums from lithium-bearing minerals[J]. Hydrometallurgy, 2012, 119: 73-76. http://www.sciencedirect.com/science/article/pii/S0304386X12000515
    [12]
    钱军林. 铷铯资源应用随科技进步不断扩大[N]. 中国有色金属报, 2016-08-20(4).
    [13]
    李武, 董亚萍, 宋彭生, 等. 盐湖卤水资源开发利用[M]. 北京: 化学工业出版社, 2012.
    [14]
    陈家镛. 湿法冶金手册[M]. 北京: 冶金工业出版社, 2005.
    [15]
    傅昕, 王玲. 硅酸盐矿石资源中铷的提取工艺综述[J]. 矿产综合利用, 2020(6): 171-179. doi: 10.3969/j.issn.1000-6532.2020.06.029
    [16]
    邢鹏. 花岗岩型铷矿资源综合利用的基础研究[D]. 北京: 北京科技大学, 2020.
    [17]
    NISAN S, LAFFORE F, POLETIKO C. Extraction of rubidium from the concentrated brine rejected by integrated nuclear desalination systems[J]. Desalination and Water Treatment, 2009(8): 236-245. doi: 10.5004/dwt.2009.666
    [18]
    YUN Q, LI X, WANG R, et al. Extraction of valuable metals from lepidolite[J]. Hydrometallurgy, 2012, 117: 116-118. http://www.sciencedirect.com/science/article/pii/S0304386X1200031X
    [19]
    XING P, WANG C, WANG L, et al. Clean and efficient process for the extraction of rubidium from granitic rubidium ore[J]. Journal of Cleaner Production, 2018, 196: 64-73. doi: 10.1016/j.jclepro.2018.06.041
    [20]
    XING P, WANG C, MA B, et al. Rubidium and potassium extraction from granitic rubidium ore: process optimization and mechanism study[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4922-4930. http://www.researchgate.net/publication/323447083_Rubidium_and_Potassium_Extraction_from_Granitic_Rubidium_Ore_Process_Optimization_and_Mechanism_Study
    [21]
    王成彦, 邢鹏, 陈永强, 等. 一种从锂矿中提取锂的方法[P]. 中国: CN109593974B, 2020-10-02.
    [22]
    LV Y, XING P, MA B, et al. Efficient extraction of lithium and rubidium from polylithionite via alkaline leaching combined with solvent extraction and precipitation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(38): 14462-14470. doi: 10.1021/acssuschemeng.0c04437
    [23]
    李洪桂. 冶金原理[M]. 北京: 科学出版社, 2005.
    [24]
    TIAN L, ZHAO R, WANG J, et al. Formation mechanism and luminescence properties of nanostructured sodium yttrium fluoride corn sticks synthesized by precipitation transformation method[J]. Journal of Rare Earths, 2015, 33(12): 1246-1250. doi: 10.1016/S1002-0721(14)60552-4
    [25]
    WU X, WANG Z, XIA C, et al. Kinetics study on leaching of rare earth and aluminum from polishing powder waste using hydrochloric acid[J]. Journal of Rare Earths, 2020, 38(11): 1009-1018. http://d.wanfangdata.com.cn/periodical/zgxtxb-e202009012
    [26]
    郭钟群, 金解放, 王观石, 等. 风化壳淋积稀土矿浸取动力学基础理论研究[J]. 有色金属科学与工程, 2017, 8(5): 127-132. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017050019
    [27]
    GRENMAN H, INGVES M, WARNA J, et al. Common potholes in modeling solid-liquid reactions-methods for avoiding them[J]. Chemical Engineering Science, 2011, 66(20): 4459-4467. doi: 10.1016/j.ces.2011.04.022
    [28]
    LI M, WEI C, QIU S, et al. Kinetics of vanadium dissolution from black shale in pressure acid leaching[J]. Hydrometallurgy, 2010, 104(2): 193-200. doi: 10.1016/j.hydromet.2010.06.001
    [29]
    LI B, LI K, YAN Y, et al. Catalytic epoxidation of cis-cyclooctene over vanadium-exchange faujasite zeolite catalyst with ionic liquid as cosolvent[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(2): 437-444. doi: 10.1021/acssuschemeng.5b00854
  • Related Articles

    [1]LU Jianhong, YU Liusi, FAN Jinlong, MENG Junchen, CHEN Lifen, WU Guangwei. Deposition kinetics analysis of electroless copper using the EDTA/THPED dual-ligand system[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 42-49. DOI: 10.13264/j.cnki.ysjskx.2022.06.006
    [2]XU Jiacong, YU Xiaoqiang, GONG Ao, WU Xuangao, CAO Caifang, LIU Mudan, CHEN Zhiqiang, TIAN Lei, XU Zhifeng, LIU Yong. Kinetic of carbothermal reduction of zinc, tin and lead from electroplating sludge[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 52-58. DOI: 10.13264/j.cnki.ysjskx.2020.05.008
    [3]ZHANG Hao, WANG Guang, ZHANG Shihan, WANG Jingsong, XUE Qingguo. Direct reduction kinetics of copper slag[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 28-33. DOI: 10.13264/j.cnki.ysjskx.2019.01.005
    [4]SONG Hanlin, JIANG Pingguo, LIU Wenjie, WANG Zhengbing. Research progress on hydrogen reduction kinetics of tungsten oxide[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 64-69. DOI: 10.13264/j.cnki.ysjskx.2017.05.009
    [5]TANG Weidong, ZHU Weiwei, JIANG Pingguo, JING Qingxiu. Kinetics of chlorination process of copper oxide[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 46-50. DOI: 10.13264/j.cnki.ysjskx.2017.01.008
    [6]XIA Qing, YUE Tao. The research progress of flotation kinetics[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 46-51. DOI: 10.13264/j.cnki.ysjskx.2012.02.010
    [7]NIE Jin-xia, HEN Yun-ren, CHEN Ming CHEN Ming. Thermodynamics and Kinetics of Copper Sorption by Rice Bran[J]. Nonferrous Metals Science and Engineering, 2008, 22(4): 35-38.
    [8]ZHAO Zhong-wei, JIA Xi-jun, CHEN Ai-liang, LONG Shuang, HUO Guang-sheng, LI Hong-gui. Leaching Silicon Kinetics of Zinc Oxide Ore Leached with Alkali[J]. Nonferrous Metals Science and Engineering, 2008, 22(4): 31-34.
    [9]ZU Yan, SU Wen-ming. Thinkings of Strengthening the Inside Account Control[J]. Nonferrous Metals Science and Engineering, 2005, 19(1): 5-7,22.
    [10]ZHANG Tian, ZHAO Shu-Hing. Application of Fuzzy Intelligent Controller to Cone Crusher[J]. Nonferrous Metals Science and Engineering, 2004, 18(4): 42-43.
  • Cited by

    Periodical cited type(8)

    1. 李律达,洪鑫,满绪存,陈俏,张建波,刘锦平. Cu-Ni-Ti合金高温热变形行为及热加工图. 有色金属科学与工程. 2022(01): 44-51 . 本站查看
    2. 韩双,陈继强,谢钢平,孔重良. 刮削模具对铝合金焊丝表面刮削效果的影响. 江西冶金. 2022(02): 1-5 .
    3. 杨兵,刘春忠,高恩志,孙巍,刘停,张洪宁,朱明伟,卢天倪. 铸态退火2024合金在不同温度下的变形行为. 材料研究学报. 2022(10): 730-738 .
    4. 刘超,陈继强,文锋,李奇龙,赵鸿金. 循环应变-高温退火制备Al-Cu-Li合金单晶. 有色金属科学与工程. 2021(01): 81-89 . 本站查看
    5. 周朗牙,王日初,王小锋,蔡志勇,董翠鸽. SiCp/2014Al复合材料的热变形行为及本构模型. 有色金属科学与工程. 2021(04): 66-74 . 本站查看
    6. 荆丰伟,武晓燕,段晓鸽,仇鹏,江海涛. AA6014铝合金热变形行为及热加工图. 塑性工程学报. 2021(09): 144-153 .
    7. 徐全磊,谭必丁,陆军合. 车用铝合金5182_O准静态单向拉伸试验. 汽车工程师. 2020(10): 14-16 .
    8. 李鹏飞,邓持清,林新博,齐亮,姚幼甫,徐高磊. 上引连铸TU1热变形行为研究. 有色金属科学与工程. 2019(03): 69-74 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (150) PDF downloads (15) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return