Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LI Dong, YUAN Lele, ZHANG Yongbing, DOU Wenyue. Research progress on the recycling of waste acid water generated from the nonferrous metallurgy[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 822-830. DOI: 10.13264/j.cnki.ysjskx.2024.06.005
Citation: LI Dong, YUAN Lele, ZHANG Yongbing, DOU Wenyue. Research progress on the recycling of waste acid water generated from the nonferrous metallurgy[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 822-830. DOI: 10.13264/j.cnki.ysjskx.2024.06.005

Research progress on the recycling of waste acid water generated from the nonferrous metallurgy

More Information
  • Received Date: August 14, 2023
  • Revised Date: December 17, 2023
  • It is extremely difficult to deal with the waste acid generated by nonferrous metal smelting because of its high concentrations of sulfuric acid, fluorine, chlorine, arsenic and other impurities. Therefore, recycling of waste acid in the form of industrial sulfuric acid after two-stage processes of decontamination and concentration has become a surefire way. The research progress in the field of decontamination and concentration of waste acid in recent years was reviewed. On the one hand, for the selective removal of heavy metal ions, arsenic, fluorine and chlorine of waste acid, the research focused on several chemical precipitation techniques including sulfide precipitation, chelate precipitation, scorodite precipitation, copper slag precipitation and bismuth oxide precipitation, analyzing and comparing their operation principle, effect and advantages and disadvantages. The optimization direction of different pollutant removal methods was deeply analyzed. On the other hand, aiming at the technologies of concentration of waste acid, the study reviewed evaporation concentration and membrane distillation methods, analyzing the advantages and disadvantages of these two methods in the application and the direction of improvement. Finally, the development trend of waste acid recycling technology was prospected to provide a reference for further research in this field.

  • [1]
    柴立元, 王云燕, 孙竹梅, 等. 绿色冶金创新发展战略研究[J]. 中国工程科学, 2022, 24(2): 10-21.
    [2]
    TIAN H J, CHEN C, WAN D H, et al. SO2 removing from smelter off-gas by converting to elemental sulfur with application of CaS particles synthesized by solvothermal method[J]. Fuel, 2019, 255: 115702.
    [3]
    YUN T, CHUNG C W, KWAK S Y. Recovery of sulfuric acid aqueous solution from copper-refining sulfuric acid wastewater using nanofiltration membrane process[J]. Journal of Environmental Management, 2018, 223: 652-657.
    [4]
    NAZARI A M, RADZINSKI R, GHAHREMAN A. Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic[J]. Hydrometallurgy, 2017, 174: 258-281.
    [5]
    KUMAR M, NANDI M, PAKSHIRAJAN K. Recent advances in heavy metal recovery from wastewater by biogenic sulfide precipitation[J]. Journal of Environmental Management, 2021, 278: 111555.
    [6]
    DOU W Y, HU X Y, KONG L H, et al. Removal of Cl(-1)from acidic industrial wastewater through oxidation: a review on methods and mechanisms[J]. Environmental Science: Water Research & Technology, 2022, 9(1): 1-10.
    [7]
    赵毅, 孙亮, 李玉虎, 等. 废磷酸铁锂正极粉浸出液中氟的脱除[J]. 江西冶金, 2023, 43(3): 179-185.
    [8]
    赵洪贵, 陈朋伟, 庄小波. 有色冶炼污酸综合处理及废水回用技术研究[J]. 硫酸工业, 2019(5): 39-46.
    [9]
    T/CRRA 1901-2022. 铜冶炼污酸梯级回收利用工程技术规范[S].
    [10]
    龙双, 王浩宇, 刘卫平, 等. 污酸梯级资源化处理新技术及工程应用[J]. 世界有色金属, 2021(14): 1-5.
    [11]
    DOU W Y, PENG X J, KONG L H, et al. A review on the removal of Cl(-1)with high concentration from industrial wastewater: Approaches and mechanisms[J]. Science of the Total Environment, 2022, 824: 153909.
    [12]
    LEWIS A E. Review of metal sulphide precipitation[J]. Hydrometallurgy, 2010, 104: 222-234.
    [13]
    FU F L, WANG Q. Removal of heavy metal ions from wastewaters: A review[J]. Journal of Environmental Management, 2011, 92(3): 407-418.
    [14]
    许永, 刘峰彪, 杨晓松. 硫化法处理酸性含重金属离子废水的试验研究[J]. 矿冶, 2014, 23(1): 68-71.
    [15]
    李骞, 邓蓬, 杨永斌, 等. 从含重金属废水中回收铅、汞的研究[J]. 矿冶工程, 2015(2): 75-79.
    [16]
    PENG X J, XIA Z L, KONG L H, et al. UV light irradiation improves the aggregation and settling performance of metal sulfide particles in strongly acidic wastewater[J]. Water Research, 2019, 163: 114860.
    [17]
    胡梦轩, 许佩瑶, 汪黎东, 等. 脱硫废水中重金属离子去除研究进展[J]. 水污染及处理, 2016, 4(3): 85-90.
    [18]
    YANG X, PENG X J, KONG L H, et al. Removal of Ni(Ⅱ) from strongly acidic wastewater by chelating precipitation and recovery of NiO from the precipitates[J]. Journal of Environmental Sciences, 2021, 104: 365-375.
    [19]
    李亚林, 刘蕾, 叶庆, 等. 冶金酸性含镉废水的复合硫化法处理研究[J]. 工业安全与环保, 2017, 43(3): 83-87.
    [20]
    易爽, 刘牡丹, 宋卫锋, 等. 高效重金属捕集剂TDTC对络合铜的去除性能[J]. 环境工程学报, 2021, 15(12): 3844-3853.
    [21]
    廖家隆, 张喆秋, 陈丽杰, 等. 含砷废水处理研究进展[J]. 有色金属科学与工程, 2018, 9(1): 86-91.
    [22]
    LIU R P, YANG Z C, HE Z L, et al. Treatment of strongly acidic wastewater with high arsenic concentrations by ferrous sulfide(FeS): Inhibitive effects of S(0)-enriched surfaces[J]. Chemical Engineering Journal, 2016, 304: 986-992.
    [23]
    HU B, YANG T Z, LIU W F, et al. Removal of arsenic from acid wastewater via sulfide precipitation and its hydrothermal mineralization stabilization[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(11): 2411-2421.
    [24]
    OSTERMEYER P, BONIN L, FOLENS K, et al. Effect of speciation and composition on the kinetics and precipitation of arsenic sulfide from industrial metallurgical wastewater[J]. Journal of Hazardous Materials, 2020, 409: 124418.
    [25]
    KONG L H, PENG X J, HU X Y. Mechanisms of UV-light promoted removal of As(V) by sulfide from strongly acidic wastewater[J]. Environmental Science & Technology, 2017, 51(21): 12583.
    [26]
    KONG L H, HU L H, PENG X J, et al. Specific H2S release from thiosulfate promoted by UV irradiation for removal of arsenic and heavy metals from strongly acidic wastewater[J]. Environmental Science & Technology, 2020, 54(21): 14076-14084.
    [27]
    KONG L H, PENG X J, HU X Y, et al. UV-light-induced aggregation of arsenic and metal sulfide particles in acidic wastewater: The role of free radicals[J]. Environmental Science & Technology, 2018, 52(18): 10719-10727.
    [28]
    PENG X J, CHEN J Y, KONG L H, et al. Removal of arsenic from strongly acidic wastewater using phosphorus pentasulfide as precipitant: UV-light promoted sulfuration reaction and particle aggregation[J]. Environmental Science & Technology, 2018, 52(8): 4794-4801.
    [29]
    COUDERT L, BONDU R, RAKOTONIMARO T V, et al. Treatment of As-rich mine effluents and produced residues stability: Current knowledge and research priorities for gold mining[J]. Journal of Hazardous Materials, 2020, 386: 121920.
    [30]
    MIN X, LIAO Y, CHAI L, et al. Removal and stabilization of arsenic from anode slime by forming crystal scorodite[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(4): 1298-1306.
    [31]
    张俊, 李存兄, 魏昶, 等. 含砷废水水热法臭葱石沉砷[J]. 中国有色金属学报, 2019, 29(6): 1279-1288.
    [32]
    DEMOPOULOS G P, DROPPERT D J, WEERT G V. Precipitation of crystalline scorodite (FeAsO4•2H2O) from chloride solutions[J]. Hydrometallurgy, 1995, 38(3): 245-261.
    [33]
    FUJITA T, TAGUCHI R, ABUMIYA M, et al. Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. Part I[J]. Hydrometallurgy, 2008, 90: 92-102.
    [34]
    CAI G Y, ZHU X, LI K Z, et al. Self-enhanced and efficient removal of arsenic from waste acid using magnetite as an in situ iron donator[J]. Water Research, 2019, 157: 269-280.
    [35]
    LI Y K, ZHU X, QI X J, et al. Efficient removal of arsenic from copper smelting wastewater in form of scorodite using copper slag[J]. Journal of Cleaner Production, 2020, 270: 122428.
    [36]
    龚傲, 陈丽杰, 吴选高, 等. 含砷废渣处理现状及研究进展[J]. 有色金属科学与工程, 2019, 10(4): 28-33.
    [37]
    张阳, 史丙丁, 马保中, 等. 酸性溶液除氯技术研究现状及进展[J]. 有色金属科学与工程, 2021, 12(5): 10-17.
    [38]
    李斌, 孙宁磊. 镍湿法冶炼系统除氯技术的研究[J]. 中国有色冶金, 2018, 47(3):29-32.
    [39]
    彭造伟, 孔俊杰, 廖园园. 高氯锌浸出液铜渣脱氯试验及应用[J]. 有色金属科学与工程, 2020, 11(5): 154-160.
    [40]
    罗贞, 王铧泰, 解万文, 等. 湿法炼锌过程中铜渣除氯试验研究[J]. 中国有色冶金, 2020, 49(2): 17-20.
    [41]
    封志敏, 宁顺明, 王文娟, 等. 氧化铋法从硫酸锌溶液中除氯的研究[J]. 矿冶工程, 2015, 35(4): 63-66.
    [42]
    周正华. 用氧化铋从锌冶炼废水中除氯试验研究[J]. 湿法冶金, 2022, 41(6): 548-552.
    [43]
    刘洪嶂, 雷胜, 张建学, 等. 湿法炼锌系统中氧化铋除氯产业化应用[J]. 中国有色冶金, 2018, 47(6): 29-32.
    [44]
    PENG X J, DOU W Y, KONG L H, et al. Removal of chloride ions from strongly acidic wastewater using Cu(0)/Cu(Ⅱ): Efficiency enhancement by UV irradiation and the mechanism for chloride ions removal[J]. Environmental Science & Technology, 2019, 53: 383-389.
    [45]
    DOU W Y, HU X Y, KONG L H, et al. UV-improved removal of chloride ions from strongly acidic wastewater using Bi2O3: Efficiency enhancement and mechanisms[J]. Environmental Science and Technology, 2019, 53(17): 10371-10378.
    [46]
    涂宾, 衷水平, 陈杭, 等. 湿法炼锌体系除氟技术的研究现状[J]. 金属矿山, 2022, 51(5): 103-110.
    [47]
    LACSON C F Z, LU M C, HUANG Y H. Calcium-based seeded precipitation for simultaneous removal of fluoride and phosphate: Its optimization using BBD-RSM and defluoridation mechanism[J]. Journal of Water Process Engineering, 2022, 47, 102658.
    [48]
    许永, 宋文涛. 铅锌冶炼厂酸性废水用CaO作除氟剂试验研究[J]. 有色金属工程, 2017, 7(5): 92-94.
    [49]
    EPSHTEIN A, NIR O, MONAT L, et al. Treatment of acidic wastewater via fluoride ions removal by SiO2 particles followed by phosphate ions recovery using flow-electrode capacitive deionization[J]. Chemical Engineering Journal, 2020, 400: 125892.
    [50]
    HU X Y, ZHU F, KONG L H, et al. A novel precipitant for the selective removal of fluoride ion from strongly acidic wastewater: Synthesis, efficiency, and mechanism[J]. Journal of Hazardous Materials, 2021, 403: 124039.
    [51]
    华宏全, 徐蕾. 多效蒸发浓缩技术在铜冶炼生产过程中的应用[J]. 有色冶金节能, 2020, 36(3): 20-22.
    [52]
    李维平, 南君芳, 张克荣, 等. 有色冶炼废酸废水减量化和资源化处理的研究[J]. 硫酸工业, 2019(7): 11-16.
    [53]
    PANG H Y, LU R F, ZHANG T, et al. Chemical dehydration coupling multi-effect evaporation to treat waste sulfuric acid in titanium dioxide production process[J]. Chinese Journal of Chemical Engineering, 2020, 28: 1162-1170.
    [54]
    李海宇, 宋卫锋. 膜处理技术在废酸回收中的应用[J]. 膜科学与技术, 2016, 36 (3): 136-141.
    [55]
    LI X J, QIN Y J, LIU R L, et al. Study on concentration of aqueous sulfuric acid solution by multiple-effect membrane distillation[J]. Desalination, 2012, 307: 34-41.
    [56]
    李伟, 纪仲光, 王巍, 等. 冶炼污酸管式气隙膜蒸馏过程研究[J]. 稀有金属, 2020, 44(6): 639-646.
    [57]
    吴英来, 郭政伟. 膜蒸馏技术在稀硫酸回收中的应用[J]. 硫酸工业, 2022(10): 26-28.
  • Related Articles

    [1]SU Yao, GUO Hanjie, GUO Jing, LUO Yiwa, LI Gang, YANG Qingsong, ZHENG Xiaodan. Effect of Ti content on solidification organization and non-metallic inclusions in 0Cr25Al5 electrothermal alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 8-16. DOI: 10.13264/j.cnki.ysjskx.2025.01.002
    [2]LI Shen, QIU Yaoheng, CHEN Chaoyi, LI Junqi, WANG Linzhu, LI Zhenglong. Research progress on inclusion in aluminum[J]. Nonferrous Metals Science and Engineering, 2024, 15(5): 660-669. DOI: 10.13264/j.cnki.ysjskx.2024.05.004
    [3]ZANG Ruoyu, LI Jing, HUANG Fei. Effect of rare earth cerium on inclusions and hot ductility of high-strength steel for construction machinery[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 449-456. DOI: 10.13264/j.cnki.ysjskx.2024.03.015
    [4]LI Yan, ZHANG Jiongming, YIN Yanbin. Inclusions in IF steel continuous casting slab and hot rolled sheet[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 18-26. DOI: 10.13264/j.cnki.ysjskx.2020.06.003
    [5]WEN Kun, LI Jing, YAN Wei, SUN Yanhui. Study on the control of D inclusion in the SWRH82B steel by CaO-SiO2-Al2O3-CaF2 refining slag[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 7-15. DOI: 10.13264/j.cnki.ysjskx.2019.04.002
    [6]QU Miao, LIU Yu, XIAO Zhengbing. A first principle study on the basic properties of inclusions in aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 1-10. DOI: 10.13264/j.cnki.ysjskx.2018.06.001
    [7]YIN Zhenjiang, PENG Yuanlong, CAI Xina, WANG Zhigang, WU Chunhong, LAI Chaobin. Effect of Yttrium Based Rare Earth on Inclusions in 51CrV4 Spring Steel[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 26-30. DOI: 10.13264/j.cnki.ysjskx.2017.04.005
    [8]SONG Gaoyang, SONG Bo, YANG Yuhou, JIA Shujian, LI Juncheng, XIN Wenbin. Application of super gravity to separating non-metallic inclusions from 5052 aluminum alloy melt[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 29-34. DOI: 10.13264/j.cnki.ysjskx.2015.01.006
    [9]ZHANG Li-heng, WANG Guo-cheng, ZHU Qing-de. Thermodynamic analysis formed by non-metallic inclusions in welding gas vessel steel HP295[J]. Nonferrous Metals Science and Engineering, 2011, 2(6): 22-28.
    [10]YUAN Yuan_ming. Experimental Investigation of Separating Whole grade Ilmenite by SLon Magnetic Separators[J]. Nonferrous Metals Science and Engineering, 2002, 16(3): 19-21.
  • Cited by

    Periodical cited type(3)

    1. 熊星强,李长荣,陈龙海,陈璐,宁州韶. 稀土钇对高碳硬线钢中氧化铝夹杂物的改性研究. 稀有金属. 2024(04): 508-516 .
    2. 王飞,牛家振,郭盛琦,王俊利,郭靖. 氩气保护电渣重熔脱硫预测研究. 有色金属科学与工程. 2024(04): 487-496 . 本站查看
    3. 王利,刘成宝,李浩秋,王毅,孙宗辉,刘春伟,杨超云,付志豪. 稀土对20CrMnTi齿轮钢夹杂物和疲劳性能的影响. 特殊钢. 2024(06): 117-124 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (31) PDF downloads (5) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return