Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
PENG Junjun, WANG Xu, CAI Boqing, SHI Zhongning, REN Rushan. Investigation on the density of LiF-[CaF2/YbF3]-Yb2O3 molten salt and Yb-Ni alloy[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 189-194. DOI: 10.13264/j.cnki.ysjskx.2024.02.005
Citation: PENG Junjun, WANG Xu, CAI Boqing, SHI Zhongning, REN Rushan. Investigation on the density of LiF-[CaF2/YbF3]-Yb2O3 molten salt and Yb-Ni alloy[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 189-194. DOI: 10.13264/j.cnki.ysjskx.2024.02.005

Investigation on the density of LiF-[CaF2/YbF3]-Yb2O3 molten salt and Yb-Ni alloy

More Information
  • Received Date: December 01, 2022
  • Revised Date: May 14, 2023
  • Available Online: May 05, 2024
  • The density of LiF-[CaF2/YbF3]-Yb2O3 molten salt system is an important parameter for preparing rare earth Yb alloy by electrolysis. In this paper, Archimedes method was used to measure and analyze the density of LiF-[CaF2/YbF3]-Yb2O3 system and its changing rule in the temperature range of 1 173 - 1 573 K. Meanwhile, mathematical models were used to estimate the density of Yb-Ni alloy and analyze its separation characteristic between molten salt and alloy during electrolysis. The results showed that the density of the system (LiF-CaF2)eutand (LiF-YbF3)eut system decreased linearly with higher temperature, and the molar volume increased linearly with rising temperature. Moreover, the excess volume of (LiF-YbF3)eut system decreased linearly with the temperature. In the range of Yb2O3 ratio from 0 to 4wt% with the temperature ranging between 1 173 and 1 573 K, the density of (LiF-CaF2)eut-Yb2O3 and (LiF-YbF3)eut-Yb2O3 molten salt systems decreased linearly as the temperature rised. When the temperature was constant, (LiF-CaF2)eut-Yb2O3 system increased linearly in the range of 0≤x(Yb2O3)≤2.5%, while (LiF-YbF3)eut-Yb2O3 system increased linearly in the range of 0≤x(Yb2O3)≤3.5%. The density of Yb-Ni alloy was higher than that of LiF-[CaF2/YbF3]-Yb2O3 molten salt system so that it was easier to be separated by electrolysis.

  • [1]
    唐政刚, 张达, 解志鹏, 等. 稀土材料的制备与高端应用[J]. 有色金属科学与工程, 2021, 12(4):112-125.
    [2]
    王玉香, 赖华生, 文小强,等. 氟化物体系熔盐电解制备YNi合金[J]. 有色金属科学与工程, 2021, 12(1):126-130.
    [3]
    刘玉宝, 陈国华, 于兵,等. 熔盐电解法制备稀土金属技术研究进展[J].稀土, 2021, 42(5):133-143.
    [4]
    张盼盼. 稀土高熵合金压力下结构演化及磁学性能研究[D]. 新乡: 河南师范大学, 2021.
    [5]
    HODGES J A, BONVILLE P, OCIO M. Magnetic properties of YbNi5 from 170Yb mossbauer and magnetisation measurements[J]. The European Physical Journal B, 2007, 57(4):365-370.
    [6]
    ZHU H M. Rare earth metal production by molten salt electrolysis[J]. Encyclopedia of Applied Electrochemistry, 2014(2): 1765-1772.
    [7]
    郭探, 王世栋, 叶秀深, 等. 熔盐电解法制备稀土合金研究进展[J]. 中国科学: 化学, 2012, 42(9): 1328-1336.
    [8]
    王旭, 廖春发, 王瑞祥, 等. 氟化物介质熔盐电解制备Ni-Yb合金及其表征[J]. 材料导报, 2019, 33(5):750-753.
    [9]
    康佳, 闫奇操, 于兵, 等. LaCl3-KCl熔盐体系物化性质研究[J]. 有色金属科学与工程, 2022, 13(3):145-151.
    [10]
    郝婷婷, 王旭, 翟玉春, 等. AlF3-(Li,Na)F-(Al2O3-Y2O3)熔盐体系物理化学性质研究[J]. 有色金属科学与工程, 2022, 13(2):10-15, 97.
    [11]
    DANEK V.Physico-chemical analysis of molten electrolytes[M]. Elsevier: Institute of Inorganic Chemistry, 2006.
    [12]
    张明杰. 熔盐电化学原理与应用[M]. 北京: 化学工业出版社, 2006.
    [13]
    朱桥, 王秀峰. 高温熔体密度测量研究进展[J]. 硅酸盐通报, 2013, 32(6):1087-1091.
    [14]
    MLYNÁRIKOVÁ J,BOČA M,GURIŠOVÁ V, et al. Thermal analysis and volume properties of the systems (LiF-CaF2)eut-LnF3 (Ln=Sm, Gd, and Nd) up to 1273K[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124(2):973-987.
    [15]
    JANZ G J. Molten salts handbook[M]. New York:Academic Press, 1967.
    [16]
    KIRSHENBAUM A D, CAHILL J A, STOKES C S. The density of molten metal fluorides in the range of 1 600~2 500 K[J]. Journal of Inorganic and Nuclear Chemistry, 1960, 15(3):297-304.
    [17]
    STANKUS S V, KHAIRULIN R A, TYAGEL'SKY P V. Density changes of ytterbium trifluoride on phase transitions[J]. Journal of Alloys and Compounds, 1997, 257(1):62-64.
    [18]
    BRILLO J, EGRY I. Density determination of liquid copper, nickel, and their alloys[J]. International Journal of Thermophysics, 2003, 24(4):1155-1170.
    [19]
    BRILLO J , EGRY I. Density and excess volume of liquid copper, nickel, iron, and their binary alloys[J]. International Journal of Materials Research, 2004, 95(8):691-697.
    [20]
    SCHMITZ J, HALLSTEDT B, BRILLO J, et al. Density and thermal expansion of liquid Al-Si alloys[J]. Journal of Materials Science, 2012, 47(8):3706-3712.
    [21]
    SEERVELD J, VAN TILL S, VAN ZYTELD J B. Density of liquid ytterbium[J]. Journal of Chemical Physics, 1983, 79(7):3597-3599.
    [22]
    MARCUS Y. On the compressibility of liquid metals[J]. The Journal of Chemical Thermodynamics, 2016, 109:11-15.
  • Related Articles

    [1]LI Xingpeng, SHU Qing. Preparation, characterization of Lewis acidic solid acid catalyst Ce-Ag-PW and its catalytic application in biodiesel production via esterification[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 42-50. DOI: 10.13264/j.cnki.ysjskx.2020.02.006
    [2]GUO Xueyi, WANG Songsong, WANG Qinmeng, TIAN Qinghua. Development and application of oxygen bottom blowing copper smelting simulation software SKSSIM[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 1-6. DOI: 10.13264/j.cnki.ysjskx.2017.04.001
    [3]YANG Subing, YANG Zhanbing, WANG Hui, ZHAO Shiqiangb. Insitu observation of void swelling behavior in SUS316L steel under electron beam irradiation[J]. Nonferrous Metals Science and Engineering, 2017, 8(2): 24-30. DOI: 10.13264/j.cnki.ysjskx.2017.02.005
    [4]ZHONG Shengwen, HUANG Bing. Effects of excess lithium salt on properties of perovskite-type solid electrolyte Li3/8Sr7/16Ta3/4Hf1/4O3[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 70-74. DOI: 10.13264/j.cnki.ysjskx.2017.01.012
    [5]WANG Jinliang, YANG Yiqing. Analysis of the electric field in rare earth molten salt electrolytic cell based on Comsol[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 30-34. DOI: 10.13264/j.cnki.ysjskx.2016.06.006
    [6]DONG Piaoping, XIE Xinrong, LIANG Fuyong, ZOU Zhenggang, WEN Herui. Synthesis and application of lanthanide-based metal-organic frameworks[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 137-150. DOI: 10.13264/j.cnki.ysjskx.2016.03.024
    [7]ZHENG Quan. Volatilization characteristics of magnesium electrolyte[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 47-51. DOI: 10.13264/j.cnki.ysjskx.2015.06.009
    [8]FANG Ling, ZHANG Xiao-lian, WANG Ke-jun. Research Progress of High Volume Fraction SiCp/Al Composites[J]. Nonferrous Metals Science and Engineering, 2007, 21(4): 34-37.
    [9]SHEN Wen. Network Monitoring and Controlling System for Measurement Based on MODBUS[J]. Nonferrous Metals Science and Engineering, 2007, 21(2): 42-44.
    [10]LI Jing, LIU Shao-feng. The Application of Digital Elevation Model to Mine's Dynamic Monitoring[J]. Nonferrous Metals Science and Engineering, 2006, 20(4): 6-9.
  • Cited by

    Periodical cited type(2)

    1. 匡玲瑶,乔双,王倩,王星敏,代金航,古兴兴. 原位构筑聚糠醇SEI膜用于稳定锌负极的机制研究. 稀有金属. 2024(07): 965-975 .
    2. 周兴杰,王家伟,王海峰,裴正清,马德华,郑可欣,鲁菊. 新生二氧化锰的制备及其吸附硫酸锰溶液中钼的行为. 有色金属科学与工程. 2024(06): 792-800 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (64) PDF downloads (8) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return