Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHU Ningyuan, CHEN Qiuming, CHEN Shihao, ZUO Shoubin. Study on high-temperature constitutive model of TC11 titanium alloy dynamic recovery and dynamic recrystallization[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 58-66. DOI: 10.13264/j.cnki.ysjskx.2024.01.008
Citation: ZHU Ningyuan, CHEN Qiuming, CHEN Shihao, ZUO Shoubin. Study on high-temperature constitutive model of TC11 titanium alloy dynamic recovery and dynamic recrystallization[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 58-66. DOI: 10.13264/j.cnki.ysjskx.2024.01.008

Study on high-temperature constitutive model of TC11 titanium alloy dynamic recovery and dynamic recrystallization

More Information
  • Received Date: December 11, 2022
  • Revised Date: March 13, 2023
  • Gleeble-1500 thermal simulation testing machine was used to perform an isothermal constant strain rate uniaxial compression test for TC11 titanium alloy under a deformation temperature of 900~1 050 ℃ and strain rate of 0.1~10 s-1. The microstructure observation results show that a significant dynamic recrystallization phenomenon occurs in TC11 titanium alloy during the thermal deformation process. Under the deformation temperatures of 900 ℃ and 950 ℃, the recrystallization grain size first increases and then decreases with increasing strain rate. Furthermore, as the deformation temperature reaches 1 000 ℃ and 1 050 ℃, the content of the α phase significantly decreases, and the microstructure evolution is dominated by dynamic recrystallization, accompanied by obvious grain refinement. To study the effect of the dynamic recrystallization phenomenon on rheological behavior, a high-temperature constitutive model of flow stress based on dynamic recovery and dynamic recrystallization was constructed in combination with the K-M dislocation density model and dynamic recrystallization fraction model. By comparing the prediction results of the constitutive model with the test data, the correlation coefficient and average relative error are 0.989 and 6.53%, respectively, which suggests that the constructed flow stress model with dynamic recovery and dynamic recrystallization can accurately predict the flow stress of TC11 titanium alloy under thermal deformation.
  • [1]
    王晓英,周建华,庞克昌. 航空用钛合金等温锻件研制[J]. 上海钢研,2005(2): 8-11.
    [2]
    陈学伟,张士宏,王忠堂,等. 热处理工艺对TC11钛合金组织及性能的影响[J]. 金属热处理,2007, 32(10): 48-51.
    [3]
    蔡改贫,罗茜茜,刘鑫. 基于PSO-LSSVM的Ni-Cr-W-Mo合金本构关系研究[J]. 塑性工程学报,2020, 27(9): 140-146.
    [4]
    吴迪鹏,武永,陈明和,等. TC31钛合金板材高温流变行为及组织演变研究[J]. 稀有金属材料与工程,2019,48(12): 3901-3910.
    [5]
    门正兴,周杰,郑金辉,等. TC18钛合金热压缩过程峰值应力及动态软化本构模型[J]. 锻压技术,2018,43(6): 129-133.
    [6]
    倪红明,董显娟,徐勇,等. Ti-48Al-2Nb-2Cr合金热变形行为及本构关系研究[J]. 特种铸造及有色合金,2020,40(2): 228-232.
    [7]
    WANG X Y,HUANG C Z, ZOU B,et al. Dynamic behavior and a modified Johnson-Cook constitutive model of Inconel 718 at high strain rate and elevated temperature[J]. Materials Science & Engineering, 2013, 580(8):385-390.
    [8]
    秦彩芳,许泽建,窦旺,等. 金属材料在复杂应力状态下的塑性流动特性及本构模型[J]. 爆炸与冲击, 2022, 42(9): 79-89.
    [9]
    张银喜,张军,黄文,等. 纯钛高应变率拉伸力学行为的实验研究[J]. 材料工程, 2011, 39(12): 6-9.
    [10]
    赵海宾,高赞,李富松,等. 热变形对汽车用Al-Sc-Zr合金高温流变形行为的影响及本构方程的建立[J]. 有色金属科学与工程, 2022, 13(5): 41-48.
    [11]
    JIA D, SUN W R, XU D S, et al. Dynamic recrystallization behavior of GH4169G alloy during hot compressive deformation[J]. Journal of Materials Science & Technology, 2019, 35(9): 1851-1859.
    [12]
    张宏建,温卫东,崔海涛,等. Z-A模型的修正及在预测本构关系中的应用[J]. 航空动力学报,2009,24(6): 1311-1315.
    [13]
    ZHAO Q Y, YANG F, TORRENS R, et al. Comparison of hot deformation behaviour and microstructural evolution for Ti-5Al-5V-5Mo-3Cr alloys prepared by powder metallurgy and ingot metallurgy approaches[J]. Materials & Design, 2019, 169: 107682.
    [14]
    陈慧琴,曹春晓,郭灵,等. TC11钛合金β相区热变形动态再结晶过程的研究[J]. 材料工程,2009(5):43-48.
    [15]
    余新平,潘光永,黄庆华,等. α+β两相区压缩变形后TC21合金的显微组织模拟[J]. 机械工程材料,2022, 46(3): 68-74, 82.
    [16]
    吝媛,杨奇,黄拓,等. Ti9148钛合金β-相晶粒长大行为[J]. 有色金属科学与工程,2022,13(2): 93-97.
    [17]
    程晨,雷旻,万明攀,等. BT25钛合金高温变形行为[J]. 有色金属科学与工程,2017,8(6): 51-56.
    [18]
    余昭福, 陈涛, 刘政. 超声处理Al-Si合金及其等温组织形貌分形特征[J]. 有色金属科学与工程,2017,8(4): 54-60.
    [19]
    蔺永诚,肖逸伟,丁永峰,等. TC系列钛合金锻造及组织性能调控工艺研究进展[J]. 锻压技术, 2021, 46(9): 22-33.
    [20]
    王立颖,杨友,刘春兰. 热机械加工Ti-6Al-4V钛合金的流变行为和显微组织演变[J]. 锻压技术, 2020, 45(12): 183-190.
    [21]
    任伟,吴冰洁,邱阳,等. 控氮304不锈钢热变形过程中的动态再结晶行为研究[J].西安交通大学学报,2021,55(3): 145-154.
    [22]
    GALINDO-NAVA E I, SIETSMA J, RIVERA-DÍAZ-DEL-CASTILLO P E J. Dislocation annihilation in plastic deformation II. Kocks-Mecking Analysis[J]. Acta Materialia, 2012, 60(6/7): 2615-2624.
    [23]
    LEE J W, SON K T, JUNG T K, et al. Continuous dynamic recrystallization behavior and kinetics of Al-Mg-Si alloy modified with CaO-added Mg[J]. Materials Science & Engineering: A, 2016, 673: 648-659.
    [24]
    CHOE J I. Constitutive relations for determining the critical conditions for dynamic recrystallization behavior[J]. The Physics of Metals and Metallography, 2016, 117(4): 364-370.
    [25]
    WU C, HAN S. Hot deformation behavior and dynamic recrystallization characteristics in a low-alloy high-strength Ni-Cr-Mo-V steel[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(9): 963-974.
    [26]
    ZHANG W W. Simulation and experimental study of dynamical recrystallization kinetics of Tb8 titanium alloys[J]. Materials (Basel, Switzerland), 2020, 13(19): 4429.
  • Related Articles

    [1]YAO Mingcan, LI Tianyu, HU Jin, FU Fangzhong, LIN Jiahao, FAN Helin, WANG Ruixiang, XU Zhifeng. Structure and transport properties of FeO-SiO2 melt[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 17-24. DOI: 10.13264/j.cnki.ysjskx.2025.01.003
    [2]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [3]JIN Jiefang, YU Xiong, ZHONG Yilu. Energy dissipation characteristics of red sandstone with different water content during impact loading[J]. Nonferrous Metals Science and Engineering, 2021, 12(5): 69-80. DOI: 10.13264/j.cnki.ysjskx.2021.05.009
    [4]FAN Jie, XIE Gang, TIAN Lin, YU Xiaohua, WANG Bingbing, WANG Pinjie. Calculation of first principles of electron structure of Fe2+ doped sphalerite and its influence on mineral leaching[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 1-7. DOI: 10.13264/j.cnki.ysjskx.2021.02.001
    [5]GAN Minglong, LI Yameng, FU Junxiang. Phase transition and upconversion luminescent properties of NaYF4: Yb, Er@SiO2 at high temperature[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 75-80. DOI: 10.13264/j.cnki.ysjskx.2021.01.010
    [6]TONG Zhifang, LiN Xin, ZENG Qingpo. Dissipative particle dynamics of the sadsorption propertiesof compound additives on the surface of dicalcium silicate[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 1-8. DOI: 10.13264/j.cnki.ysjskx.2020.04.001
    [7]QU Miao, LIU Yu, XIAO Zhengbing. A first principle study on the basic properties of inclusions in aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 1-10. DOI: 10.13264/j.cnki.ysjskx.2018.06.001
    [8]YUAN Wei, JIN Jie-fang, LIANG Chen, WANG Jie, He Cong, CHENG Yun. Numerical Analysis of Dynamic Damage and Energy Dissipation Characteristics of Concrete under Confining Pressure[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 98-104. DOI: 10.13264/j.cnki.ysjskx.2017.04.017
    [9]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [10]LI Qin, LUO Yang, YE Xinyu, HUANG Xin. Application progress of first-principles calculations in CALPHAD technology[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 37-46. DOI: 10.13264/j.cnki.ysjskx.2015.06.008
  • Cited by

    Periodical cited type(1)

    1. 赵越,刘宇奇,金楠皓,王新颖,刘小铭,陈寒,李玮,李杨华. 基于含氮衍生物和羧酸的Co(Ⅱ)配合物的合成、结构及磁学、荧光性质. 云南大学学报(自然科学版). 2024(02): 309-318 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (163) PDF downloads (17) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return