Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WU Jianzhong, YANG Wensheng, GUO Hanjie, YU Mengxi, SHI Xiao, DUAN Shengchao. Effect of sulfur content fluctuation on mechanical properties of DH36 ship plate steel[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 22-28, 78. DOI: 10.13264/j.cnki.ysjskx.2017.03.004
Citation: WU Jianzhong, YANG Wensheng, GUO Hanjie, YU Mengxi, SHI Xiao, DUAN Shengchao. Effect of sulfur content fluctuation on mechanical properties of DH36 ship plate steel[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 22-28, 78. DOI: 10.13264/j.cnki.ysjskx.2017.03.004

Effect of sulfur content fluctuation on mechanical properties of DH36 ship plate steel

More Information
  • Received Date: December 24, 2016
  • Published Date: June 29, 2017
  • The mechanical properties of ship plate steel, such as yield strength, tensile strength, reduction of area and impact energy, are decided by the microstructure and steel composition. Therefore, it is highly advised to minimize the effect of chemical composition fluctuation on the mechanical properties. This paper established a mathematical model of sulfur content and mechanical properties of DH36 ship plate steel under different element content by applying the industrial production data and Matlab software. The results show that impact energy of the DH36 ship plate steel increases first, then drops, with the rising sulfur content. The yield strength, tensile strength and section reduction rate of DH36 ship plate steel are observed in a nonlinear relationship with the sulfur content, the tendency relating to the contents of other elements.
  • [1]
    IGIS A, INOHRA, HIRAIT A. High performance steel plate for shipbuilding[J]. JFE Technical Report, 2005(5): 16-23.
    [2]
    谭乃芬, 郑一铭.我国造船用钢市场情况及展望[J].船舶物资与市场, 2016(1): 38-41. http://www.cnki.com.cn/Article/CJFDTOTAL-CBWZ201601014.htm
    [3]
    BRIAN F, PICKING. 刘嘉禾等译. 钢的组织与性能[M]. 北京: 科学出版社, 1999.
    [4]
    雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社, 2006.
    [5]
    BASTOW T J, CELOTTO S. Clustering and formation of nano-precipitates in dilute aluminium and magnesium alloys[J]. Materials Science and Engineering: C, 2003, 23(6): 757-762.
    [6]
    COURTOIS E, EPICIER T, SCOTT C. EELS study of niobium carbo-nitride nano-precipitates in ferrite[J]. Micron Technology, 2006, 37(5): 492-502. doi: 10.1016/j.micron.2005.10.009
    [7]
    HONG S G, JUN H J, KANG K B, et al. Evolution of precipitates in the Nb-Ti-V microalloyed HSLA steels during reheating[J]. Scripta Materialia, 2003, 48(8): 1201-1206. doi: 10.1016/S1359-6462(02)00567-5
    [8]
    SONG H, SHIN H, SHIN Y. Heat-treatment of clad steel plate for application of hull structure[J]. Ocean Engineering, 2016, 122: 278-287. doi: 10.1016/j.oceaneng.2016.06.042
    [9]
    李贞顺. 360MPa级船板钢的组织与性能研究[D]. 济南: 山东大学, 2010.
    [10]
    郭汉杰.冶金物理化学[M].北京:高等教育出版社, 2006.
    [11]
    SOARES C G, GARBATOV Y, ZAYED A, et al. Influence of environmental factors on corrosion of ship structures in marine atmosphere[J]. Corrosion Science, 2009, 51(9): 2014-2026. doi: 10.1016/j.corsci.2009.05.028
    [12]
    TSUKATANI I, HASHIMOTO S, INOUE T. Effects of silicon and manganese addition on mechanical properties of high-strength hot-rolled sheet steel containing retained austenite[J]. IsIJ International, 1991, 31(9): 992-1000. doi: 10.2355/isijinternational.31.992
    [13]
    潘伟. 成分与热处理对Si-Mn系中碳低合金钢组织和性能的影响[D]. 昆明: 昆明理工大学, 2015.
    [14]
    赖朝彬, 赵青松, 谭秀珍, 等.晶内铁素体及其组织控制技术研究概况[J].有色金属科学与工程, 2014, 5(6): 54-60. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201405018
    [15]
    刘兴博, 董建新.杂质元素磷、硫在特殊钢中的作用[J].特殊钢, 1997, 19(3): 1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-TSGA199803000.htm
    [16]
    LV B, ZHANG F C, LI M, et al. Effects of phosphorus and sulfur on the thermoplasticity of high manganese austenitic steel[J]. Materials Science and Engineering: A, 2010, 527(21): 5648-5653.
    [17]
    翁宇庆.超细晶钢一钢的组织细化理论与控制技术[M].北京:冶金工业出版社, 2003.
  • Related Articles

    [1]SHENG Yuhang, FAN Chunchao, WANG Zengjia, LI Guangbo, YANG Jiguang. Compressive strength and microstructure analysis of cemented tailings backfill with different cementing materials[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 570-576. DOI: 10.13264/j.cnki.ysjskx.2024.04.012
    [2]KE Yuxian, ZENG Jie, HU Kaijian, SHEN Yang, YU Songtao, MA Yongchao. Triaxial mechanical properties and evolution mechanism of fully cemented unclassified tailings backfill under seepage pressure[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 422-431. DOI: 10.13264/j.cnki.ysjskx.2024.03.012
    [3]CHENG Jinshan, GUAN Huadong, WANG Guanshi, WANG Yongchao, LIN Qiang. Experimental study on the acoustic parameters of red sandstone affected by water saturation[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 105-114. DOI: 10.13264/j.cnki.ysjskx.2024.01.013
    [4]HUA Huaitian, WANG Qingya. Effects of different factors on the fluidity, strength and microstructure of superfine tailings cemented paste backfill[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 676-683. DOI: 10.13264/j.cnki.ysjskx.2023.05.010
    [5]JIN Jiefang, LIAO Zhanxiang, YANG Yi, XU Hong, ZHAO Kui. Effect of dynamic loading on the propagation velocity of stress waves in red sandstone under axial static stress[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 107-117. DOI: 10.13264/j.cnki.ysjskx.2023.01.013
    [6]ZHUO Yu-long, CHEN Chen, CAO Shi-rong, WANG Xiao-jun, DENG Shu-qiang, FENG Xiao. Study on the strength characteristics of different block stone filling material[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 72-75. DOI: 10.13264/j.cnki.ysjikx.2016.05.013
    [7]LIU Xianjun, HE Wen, XIE Yong, LIU Hao, XIE Tao. Strength of cemented classifying tailings backfilled by new cementing agent[J]. Nonferrous Metals Science and Engineering, 2015, (2): 72-79. DOI: 10.13264/j.cnki.ysjskx.2015.02.014
    [8]HE Zhe-xiang, XIAO Qi-chun, LI Xiang, XIAO Wei. Influence of lead-zinc tailings on cement properties and mineral composition[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 57-61. DOI: 10.13264/j.cnki.ysjskx.2014.02.010
    [9]ZENG Peng, ZHAO Kui, DENG Xiao-ping, SHAO Hai, WANG Ming, WU Yue-sheng, GAO Zhong. Grey correlation analysis between rock's chemical elements and compressive strength[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 79-82, 100. DOI: 10.13264/j.cnki.ysjskx.2013.01.001
    [10]DU Yan-lin, HE Wei-min, SHI Lin-ke. Gray Correlative Analysis of Factors Impacting on Shear Wave Velocity of Soil in Eastern Zhengzhou[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 12-14.
  • Cited by

    Periodical cited type(8)

    1. 邓越,王婷婷,孙清鹏,孙金峰,张少飞. 三维阵列CoO_x/CeO_2双功能催化剂的制备及其电解水性能研究. 铜业工程. 2025(01): 95-103 .
    2. 薛天雨,黄仲,谷昊辉,张海军. 高熵合金纳米电催化剂的合成. 稀有金属. 2024(01): 90-104 .
    3. 裴启飞,郭孟伟,邵伟春,王恩泽,高明远,张启波. 锌电积体系Zn-MnO_2同槽电解电化学分析. 有色金属科学与工程. 2024(03): 322-331 . 本站查看
    4. 于巧玲,刘成宝,曹一达,郑磊之,陈丰,钱君超,邱永斌,孟宪荣,陈志刚. SnO_2QDs-g-C_3N_4/C的合成及其光催化降解四环素研究. 稀有金属. 2024(08): 1144-1153 .
    5. 朱得智,徐京城. FeS@NiMoO_4异质结构筑及电催化析氢性能研究. 有色金属材料与工程. 2024(06): 60-67+74 .
    6. 侯振宇,苑慧萍,刘彧儒,沈浩,李志念,蒋利军. 化学计量比对钇-镍基储氢合金结构和储氢性能的影响. 稀有金属. 2024(12): 1671-1680 .
    7. 余德和,左川,高勇,周世平,卢军,刘锋. 电解水析氢贵金属电催化剂的研究进展. 稀有金属. 2023(11): 1573-1586 .
    8. 王诗雯,鲁杨帆,丁朝,李建波,陈玉安,谭军. Ti基催化剂改性Mg基储氢材料的研究进展. 稀有金属. 2023(12): 1642-1656 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (56) PDF downloads (3) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return