Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHOU Wenwang, JIANG Chenxi, ZENG Danliang, WU Yibo, QIU Tingsheng, YU Wen. Study on preparation of MoSx@ZVI composite by carbothermal reduction synthesis and its treatment of acid orange G wastewater[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 407-415. DOI: 10.13264/j.cnki.ysjskx.2023.03.014
Citation: ZHOU Wenwang, JIANG Chenxi, ZENG Danliang, WU Yibo, QIU Tingsheng, YU Wen. Study on preparation of MoSx@ZVI composite by carbothermal reduction synthesis and its treatment of acid orange G wastewater[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 407-415. DOI: 10.13264/j.cnki.ysjskx.2023.03.014

Study on preparation of MoSx@ZVI composite by carbothermal reduction synthesis and its treatment of acid orange G wastewater

More Information
  • Received Date: November 21, 2022
  • Revised Date: December 25, 2022
  • Available Online: June 30, 2023
  • MoSx@ZVI composite was synthesized with molybdenite (MoS2), limonite and anthracite by carbothermal reduction. Effects of molybdenite dosage, roasting temperature, anthracite content, and roasting time on the performance of the prepared MoSx@ZVI for removing orange G (OG) were investigated. MoSx@ZVI with the best performance was prepared by roasting at 1 000 ℃ for 60 min with 6% of molybdenum and 25% anthracite. MoSx@ZVI prepared under the best conditions was analyzed by X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry. The results show that a large amount of sulfide zero-valent iron with a core-shell structure is formed in the material, the core is Fe-Mo-C alloy, and the shell may be composed of molybdenum sulfide, FeS, C, molybdenum oxide and iron oxide. The degradation experiment results show that the removal rate of OG is above 90% when MoSx@ZVI prepared under the optimal conditions is crushed to particle size smaller than 0.1 mm, and 400 mL OG simulated wastewater with a concentration of 200 mg/L is treated with 0.6 g of MoSx@ZVI for 150 min within the initial pH range of 3.0-10.0.
  • [1]
    FERREIRA M B, MUÑOZ-MORALES M, SÁEZ C, et al. Improving biotreatability of hazardous effluents combining ZVI, electrolysis and photolysis[J]. Science of the Total Environment, 2020, 713: 136647. doi: 10.1016/j.scitotenv.2020.136647
    [2]
    WANG Q, SONG X, WEI C L, et al. In situ remediation ofCr(Ⅵ) contaminated groundwater by ZVI-PRB and the corresponding indigenous microbial community responses: a field-scale study[J]. Science of the Total Environment, 2022, 805: 150260-150260. doi: 10.1016/j.scitotenv.2021.150260
    [3]
    WANG M Q, YANG S Y, LIU J Q, et al. Enteromorpha prolifera biochar as a novel ball milling aid for enhancing the interfacial reaction activity of microscale zero-valent iron (mZVI) forCr(Ⅵ) removal from water[J]. Journal of Water Process Engineering, 2022, 48: 102844. doi: 10.1016/j.jwpe.2022.102844
    [4]
    刘学, 李小燕, 陈玉洁, 等. 石墨负载纳米零价铁去除溶液中U(Ⅵ)[J]. 中国有色金属学报, 2020, 30(8): 1967-1973. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202008024.htm
    [5]
    MOLLA A, KIM A Y, WOO J C, et al. Study on preparation methodology of zero-valent iron decorated on graphene oxide for highly efficient sonocatalytic dye degradation[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107214. doi: 10.1016/j.jece.2022.107214
    [6]
    何桂春, 陈健, 丁军, 等. 活性炭负载纳米零价铁去除矿山废水中的Cu2+[J]. 有色金属科学与工程, 2016, 7(5): 119-124. doi: 10.13264/j.cnki.ysjskx.2016.05.021
    [7]
    CHENG Y J, DONG H R, LU Y, et al. Toxicity of sulfide-modified nanoscale zero-valent iron to escherichia coli in aqueous solutions[J]. Chemosphere, 2019, 220: 523-530. doi: 10.1016/j.chemosphere.2018.12.159
    [8]
    XU J, WANG Y, WENG C, et al. Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties[J]. Environmental Science & Technology, 2019, 53(10): 5936-5945.
    [9]
    SUN Y, GU M B, LYU S G, et al. Efficient removal of trichloroethene in oxidative environment by anchoring nano FeS on reduced graphene oxide supported nZVI catalyst: the role of FeS on oxidant decomposition and iron leakage[J]. Journal of Hazardous Materials, 2020, 392: 122328. doi: 10.1016/j.jhazmat.2020.122328
    [10]
    KIM E J, KIM J H, AZAD A M, et al. Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications[J]. ACS Applied Materials & Interfaces, 2011, 3(5): 1457-62.
    [11]
    WANG B, DONG H R, LI L, et al. Influence of different co-contaminants on trichloroethylene removal by sulfide-modified nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2020, 381(C): 122773.
    [12]
    PANG H W, LIU L J, BAI Z A, et al. Fabrication of sulfide nanoscale zero-valent iron and heterogeneous fenton-like degradation of 2, 4-dichlorophenol[J]. Separation and Purification Technology, 2022, 285: 120408. doi: 10.1016/j.seppur.2021.120408
    [13]
    FAN D M, JOHNSON G O, TRATNYEK P G, et al. Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR)[J]. Environmental Science & Technology, 2016, 50(17): 9558-65.
    [14]
    CHEN J, DONG H R, TIAN R, et al. Remediation of trichloroethylene-contaminated groundwater by sulfide-modified nanoscale zero-valent iron supported on biochar: investigation of critical factors[J]. Water, Air, & Soil Pollution, 2020, 231(8): 536-544.
    [15]
    DAI Y S, DUAN L F, DONG Y M, et al. Elemental sulfur generated in situ from Fe(Ⅲ) and sulfide promotes sulfidation of microscale zero-valent iron for superiorCr(Ⅵ) removal[J]. Journal of Hazardous Materials, 2022, 436: 129256. doi: 10.1016/j.jhazmat.2022.129256
    [16]
    PANG H W, ZHANG E Y, ZHANG D, et al. Precursor impact and mechanism analysis of uranium elimination by biochar supported sulfurized nanoscale zero-valent iron[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107288. doi: 10.1016/j.jece.2022.107288
    [17]
    ZHANG P, SONG D B, HAO Y L, et al. Sulfidated zero valent iron as a persulfate activator for oxidizing organophosphorus pesticides (OPPs) in aqueous solution and aged contaminated soil columns[J]. Chemosphere, 2021, 281: 130760. doi: 10.1016/j.chemosphere.2021.130760
    [18]
    LI J X, ZHANG X Y, SUN Y K, et al. Advances in sulfidation of zerovalent iron for water decontamination[J]. Environmental Science & Technology, 2017, 51(23): 13533-13544.
    [19]
    SUN Y Q, YU I K M, TSANG D C W, et al. Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater[J]. Environment International, 2019, 124: 521-532. doi: 10.1016/j.envint.2019.01.047
    [20]
    ZHOU H, WU S K, ZHOU Y Y, et al. Insights into the oxidation of organic contaminants by iron nanoparticles encapsulated within boron and nitrogen co-doped carbon nanoshell: catalyzed fenton-like reaction at natural pH[J]. Environment International, 2019, 128: 77-88. doi: 10.1016/j.envint.2019.04.006
    [21]
    YANG M, ZHANG X L, YANG Y C, et al. Effective destruction of perfluorooctanoic acid by zero-valent iron laden biochar obtained from carbothermal reduction: experimental and simulation study[J]. Science of the Total Environment, 2022, 805: 150326. doi: 10.1016/j.scitotenv.2021.150326
    [22]
    张小毛, 陈维芳, 晏长成, 等. 液相还原和碳热法制备纳米零价铁/活性炭复合材料的比较研究[J]. 水资源与水工程学报, 2015, 26(3): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201503027.htm
    [23]
    KOH E, LEE Y T. Hybrid nanocomposites of a molybdenum disulfide (MoS2) based hydrophobic filler for a robust self-cleaning effect[J]. Journal of Industrial and Engineering Chemistry, 2021, 96: 294-306. doi: 10.1016/j.jiec.2021.01.033
    [24]
    LI Z, FAN R, HU Z, et al. Ethanol introduced synthesis of ultrastable 1T-MoS2 for removal ofCr(Ⅵ)[J]. Journal of Hazardous Materials, 2020, 394: 122525. doi: 10.1016/j.jhazmat.2020.122525
    [25]
    DALILA R N, MD ARSHAD M K, GOPINATH S C B, et al. Current and future envision on developing biosensors aided by 2D molybdenum disulfide (MoS2) productions[J]. Biosensors and Bioelectronics, 2019, 132: 248-264. doi: 10.1016/j.bios.2019.03.005
    [26]
    WANG K, CHEN P P, NIE W Y, et al. Improved photocatalytic reduction ofCr(Ⅵ) by molybdenum disulfide modified with conjugated polyvinyl alcohol[J]. Chemical Engineering Journal, 2019, 359: 1205-1214. doi: 10.1016/j.cej.2018.11.057
    [27]
    LU W, SANG W J, JIA D N, et al. Improvement of degradation of orange G in aqueous solution by Fe2+ added in dielectric barrier discharge plasma system[J]. Journal of Water Process Engineering, 2022, 47: 102707. doi: 10.1016/j.jwpe.2022.102707
    [28]
    ZHANG L, SHAO Q Q, XU C H. Enhanced azo dye removal from wastewater by coupling sulfidated zero-valent iron with a chelator[J]. Journal of Cleaner Production, 2019, 213: 753-761. doi: 10.1016/j.jclepro.2018.12.183
    [29]
    DU Y F, DAI M, NAZ I, et al. Carbothermal reduction synthesis of zero-valent iron and its application as a persulfate activator for ciprofloxacin degradation[J]. Separation and Purification Technology, 2021, 275: 119201. doi: 10.1016/j.seppur.2021.119201
    [30]
    ZHOU X L, ZHU D Q, PAN J, et al. Utilization of waste copper slag to produce directly reduced iron for weathering resistant steel[J]. ISIJ International, 2015, 55(7): 1347-1352. doi: 10.2355/isijinternational.55.1347
    [31]
    SARFO P, DAS A, WYSS G, et al. Recovery of metal values from copper slag and reuse of residual secondary slag[J]. Waste Management, 2017, 70: 272-281. doi: 10.1016/j.wasman.2017.09.024
    [32]
    李中臣, 王亲猛, 田庆华, 等. 铜熔炼渣制备铁精矿研究[J]. 有色金属科学与工程, 2022, 13(4): 1-9. doi: 10.13264/j.cnki.ysjskx.2022.04.001
    [33]
    谭晓恒, 郭少毓, 喻相标, 等. 焙烧铜渣中磁铁矿的物性转变研究[J]. 有色金属科学与工程, 2020, 11(5): 83-89. doi: 10.13264/j.cnki.ysjskx.2020.05.012
    [34]
    姜平国, 闫永播, 刘金生, 等. 铜渣在CO2-CO混合气体中焙烧实验研究[J]. 有色金属科学与工程, 2018, 9(1): 28-33. doi: 10.13264/j.cnki.ysjskx.2018.01.005
    [35]
    WU N N, QU R J, LI C G, et al. Enhanced oxidative degradation of decabromodiphenyl ether in soil by coupling Fenton-persulfate processes: insights into degradation products and reaction mechanisms[J]. Science of the Total Environment, 2020, 737: 139777. doi: 10.1016/j.scitotenv.2020.139777
    [36]
    WU Z L, WANG Y P, XIONG Z K, et al. Core-shell magnetic Fe3O4@Zn/Co-ZIFs to activate peroxymonosulfate for highly efficient degradation of carbamazepine[J]. Applied Catalysis B: Environmental, 2020, 277: 119136. doi: 10.1016/j.apcatb.2020.119136
    [37]
    郑春莉, 林子深, 王辉, 等. 凹凸棒负载非晶态零价铁去除水体中的Cr(Ⅵ)[J]. 中国有色金属学报, 2022, 32(11): 3434-3447. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202211017.htm
    [38]
    ZHOU T, ZOU X, WU X, et al. Synergistic degradation of antibiotic norfloxacin in a novel heterogeneous sonochemical Fe0/tetraphosphate Fenton-like system[J]. Ultrasonics Sonochemistry, 2017, 37: 320-327. doi: 10.1016/j.ultsonch.2017.01.015
    [39]
    WU L, XIE Q, LV Y, et al. Degradation of methylene blue via dielectric barrier discharge plasma treatment[J]. Water, 2019, 11(9): 1818. doi: 10.3390/w11091818
    [40]
    李小燕, 张明, 刘义保, 等. 离子强度、阴阳离子和腐殖酸对纳米零价铁去除溶液中U(Ⅵ)的影响[J]. 中国有色金属学报, 2015, 25(12): 3505-3512. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201512029.htm
    [41]
    MASSIMA MOUELE E S, TIJANI J O, MASIKINI M, et al. Spectroscopic measurements of dissolved O3, H2O2 and OH radicals in double cylindrical dielectric barrier discharge technology: treatment of methylene blue dye simulated wastewater[J]. Plasma, 2020, 3(2): 59-91.
    [42]
    揭诗琪, 邵继莹, 吴雨桐, 等. 生物淋滤结合类芬顿反应去除底泥中重金属[J]. 有色金属科学与工程, 2016, 7(1): 108-113. doi: 10.13264/j.cnki.ysjskx.2016.01.020
    [43]
    DEV V V, WILSON B, NAIR K K, et al. Response surface modeling of orange-G adsorption onto surface tuned ragi husk[J]. Colloid and Interface Science Communications, 2021, 41: 100363.
  • Related Articles

    [1]GUO Zhongqun, ZHOU Kefan, JIN Jiefang, ZHOU Jianrong, SHANG Baihong. Reviews on the influence of the physicochemical properties of fluids on the soil seepage law[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 116-125. DOI: 10.13264/j.cnki.ysjskx.2022.04.014
    [2]ZHANG Linan, XUAN Xinpeng, CHENG Yuanyuan, WANG Jianqi, HUANG Sinong, LONG Bei. Effect of pH on stability of aerobic granular sludge[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 87-91. DOI: 10.13264/j.cnki.ysjskx.2019.01.014
    [3]YANG Shaohua, ZHANG Dancheng, ZHAO Yujuan, LI Linshan. A study on the corrosion behavior of 5083 aluminum magnesium alloy in the NaCl solutions of different pH by SECM[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 22-27. DOI: 10.13264/j.cnki.ysjskx.2018.01.004
    [4]HUANG Weilinga, JIANG Yingguob, WANG Zhongfenga. Design of pH value control system for NdFeB waste leaching[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 112-116. DOI: 10.13264/j.cnki.ysjskx.2017.06.018
    [5]YANG Shaohua, LIU Zengwei, LIN Ming, ZHAO Yujuan, LI Linshan. Corrosion behavior of 7075 aluminum alloy in NaCl solutions with different pH values[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 7-11. DOI: 10.13264/j.cnki.ysjskx.2017.04.002
    [6]LIANG Changli, QIN Wenqing, CHEN Jinghe, DAI Hongguang, ZHONG Shuiping. Effect of pH value on bio-oxidation of gold-containing pyrite by moderately thermophiles[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 25-28. DOI: 10.13264/j.cnki.ysjskx.2016.03.005
    [7]YANG You-ming, ZHANG Xiao-lin, NIE Hua-ping, LU Bo, QIAO Shan. The Chemical Behaviors of Mo(W)-H2O System Solution[J]. Nonferrous Metals Science and Engineering, 2011, 2(2): 15-18. DOI: 10.13264/j.cnki.ysjskx.2011.02.016
    [8]TANG Yun-zhi, WANG Ping, XU Liang, JI Fa-Ming, WANG Xiu-ping, HUANG Gui-zhen. Synthesis of Composite Tourmaline Materials and Their Application on Aquaculture Water Treatment[J]. Nonferrous Metals Science and Engineering, 2009, 23(4): 44-46.
    [9]LI Yun-feng, HE Jia-cheng, LI Yan. On Nickel-Zinc Separation from Sulfate Solution[J]. Nonferrous Metals Science and Engineering, 2007, 21(4): 27-30.
    [10]SHENG Pei_zhong, LEI Zhao_Wu. Experimental Investigation of Using Acidulous Water to Separate Sulphur[J]. Nonferrous Metals Science and Engineering, 2002, 16(3): 16-18.
  • Cited by

    Periodical cited type(7)

    1. 郗文龙,宋锦波,牛丽萍,刘素红. 大型底吹炉气含率的数值模拟. 材料与冶金学报. 2023(03): 224-229 .
    2. 袁启盛,张斌,戴志海,詹佳鑫,林王军,彭金鹏. 底吹炼铜喷口区多相流动特性数值模拟研究. 世界有色金属. 2021(02): 6-10 .
    3. 刘跃,常玲玲,李会荣,管小荣. 铝箔剪切机碎屑收集管优化设计. 有色金属科学与工程. 2021(04): 82-87+125 . 本站查看
    4. 张妍. 有色金属富氧底吹熔炼用氧枪设计与实验研究. 世界有色金属. 2020(13): 181-183+186 .
    5. 郭学益,田庆华,刘咏,闫红杰,李栋,王亲猛,张佳峰. 有色金属资源循环研究应用进展. 中国有色金属学报. 2019(09): 1859-1901 .
    6. 万章豪,徐志峰,黄金堤,严康. 立式釜内H_2SO_4-O_2-铜阳极泥三相搅拌模拟及灰色综合评价. 有色金属科学与工程. 2018(04): 21-28 . 本站查看
    7. 郭学益,闫书阳,王亲猛,田庆华. 氧气底吹熔炼氧枪枪位优化. 中国有色金属学报. 2018(12): 2539-2550 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (124) PDF downloads (8) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return