Citation: | ZHOU Wenwang, JIANG Chenxi, ZENG Danliang, WU Yibo, QIU Tingsheng, YU Wen. Study on preparation of MoSx@ZVI composite by carbothermal reduction synthesis and its treatment of acid orange G wastewater[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 407-415. DOI: 10.13264/j.cnki.ysjskx.2023.03.014 |
[1] |
FERREIRA M B, MUÑOZ-MORALES M, SÁEZ C, et al. Improving biotreatability of hazardous effluents combining ZVI, electrolysis and photolysis[J]. Science of the Total Environment, 2020, 713: 136647. doi: 10.1016/j.scitotenv.2020.136647
|
[2] |
WANG Q, SONG X, WEI C L, et al. In situ remediation ofCr(Ⅵ) contaminated groundwater by ZVI-PRB and the corresponding indigenous microbial community responses: a field-scale study[J]. Science of the Total Environment, 2022, 805: 150260-150260. doi: 10.1016/j.scitotenv.2021.150260
|
[3] |
WANG M Q, YANG S Y, LIU J Q, et al. Enteromorpha prolifera biochar as a novel ball milling aid for enhancing the interfacial reaction activity of microscale zero-valent iron (mZVI) forCr(Ⅵ) removal from water[J]. Journal of Water Process Engineering, 2022, 48: 102844. doi: 10.1016/j.jwpe.2022.102844
|
[4] |
刘学, 李小燕, 陈玉洁, 等. 石墨负载纳米零价铁去除溶液中U(Ⅵ)[J]. 中国有色金属学报, 2020, 30(8): 1967-1973. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202008024.htm
|
[5] |
MOLLA A, KIM A Y, WOO J C, et al. Study on preparation methodology of zero-valent iron decorated on graphene oxide for highly efficient sonocatalytic dye degradation[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107214. doi: 10.1016/j.jece.2022.107214
|
[6] |
何桂春, 陈健, 丁军, 等. 活性炭负载纳米零价铁去除矿山废水中的Cu2+[J]. 有色金属科学与工程, 2016, 7(5): 119-124. doi: 10.13264/j.cnki.ysjskx.2016.05.021
|
[7] |
CHENG Y J, DONG H R, LU Y, et al. Toxicity of sulfide-modified nanoscale zero-valent iron to escherichia coli in aqueous solutions[J]. Chemosphere, 2019, 220: 523-530. doi: 10.1016/j.chemosphere.2018.12.159
|
[8] |
XU J, WANG Y, WENG C, et al. Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties[J]. Environmental Science & Technology, 2019, 53(10): 5936-5945.
|
[9] |
SUN Y, GU M B, LYU S G, et al. Efficient removal of trichloroethene in oxidative environment by anchoring nano FeS on reduced graphene oxide supported nZVI catalyst: the role of FeS on oxidant decomposition and iron leakage[J]. Journal of Hazardous Materials, 2020, 392: 122328. doi: 10.1016/j.jhazmat.2020.122328
|
[10] |
KIM E J, KIM J H, AZAD A M, et al. Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications[J]. ACS Applied Materials & Interfaces, 2011, 3(5): 1457-62.
|
[11] |
WANG B, DONG H R, LI L, et al. Influence of different co-contaminants on trichloroethylene removal by sulfide-modified nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2020, 381(C): 122773.
|
[12] |
PANG H W, LIU L J, BAI Z A, et al. Fabrication of sulfide nanoscale zero-valent iron and heterogeneous fenton-like degradation of 2, 4-dichlorophenol[J]. Separation and Purification Technology, 2022, 285: 120408. doi: 10.1016/j.seppur.2021.120408
|
[13] |
FAN D M, JOHNSON G O, TRATNYEK P G, et al. Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR)[J]. Environmental Science & Technology, 2016, 50(17): 9558-65.
|
[14] |
CHEN J, DONG H R, TIAN R, et al. Remediation of trichloroethylene-contaminated groundwater by sulfide-modified nanoscale zero-valent iron supported on biochar: investigation of critical factors[J]. Water, Air, & Soil Pollution, 2020, 231(8): 536-544.
|
[15] |
DAI Y S, DUAN L F, DONG Y M, et al. Elemental sulfur generated in situ from Fe(Ⅲ) and sulfide promotes sulfidation of microscale zero-valent iron for superiorCr(Ⅵ) removal[J]. Journal of Hazardous Materials, 2022, 436: 129256. doi: 10.1016/j.jhazmat.2022.129256
|
[16] |
PANG H W, ZHANG E Y, ZHANG D, et al. Precursor impact and mechanism analysis of uranium elimination by biochar supported sulfurized nanoscale zero-valent iron[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107288. doi: 10.1016/j.jece.2022.107288
|
[17] |
ZHANG P, SONG D B, HAO Y L, et al. Sulfidated zero valent iron as a persulfate activator for oxidizing organophosphorus pesticides (OPPs) in aqueous solution and aged contaminated soil columns[J]. Chemosphere, 2021, 281: 130760. doi: 10.1016/j.chemosphere.2021.130760
|
[18] |
LI J X, ZHANG X Y, SUN Y K, et al. Advances in sulfidation of zerovalent iron for water decontamination[J]. Environmental Science & Technology, 2017, 51(23): 13533-13544.
|
[19] |
SUN Y Q, YU I K M, TSANG D C W, et al. Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater[J]. Environment International, 2019, 124: 521-532. doi: 10.1016/j.envint.2019.01.047
|
[20] |
ZHOU H, WU S K, ZHOU Y Y, et al. Insights into the oxidation of organic contaminants by iron nanoparticles encapsulated within boron and nitrogen co-doped carbon nanoshell: catalyzed fenton-like reaction at natural pH[J]. Environment International, 2019, 128: 77-88. doi: 10.1016/j.envint.2019.04.006
|
[21] |
YANG M, ZHANG X L, YANG Y C, et al. Effective destruction of perfluorooctanoic acid by zero-valent iron laden biochar obtained from carbothermal reduction: experimental and simulation study[J]. Science of the Total Environment, 2022, 805: 150326. doi: 10.1016/j.scitotenv.2021.150326
|
[22] |
张小毛, 陈维芳, 晏长成, 等. 液相还原和碳热法制备纳米零价铁/活性炭复合材料的比较研究[J]. 水资源与水工程学报, 2015, 26(3): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201503027.htm
|
[23] |
KOH E, LEE Y T. Hybrid nanocomposites of a molybdenum disulfide (MoS2) based hydrophobic filler for a robust self-cleaning effect[J]. Journal of Industrial and Engineering Chemistry, 2021, 96: 294-306. doi: 10.1016/j.jiec.2021.01.033
|
[24] |
LI Z, FAN R, HU Z, et al. Ethanol introduced synthesis of ultrastable 1T-MoS2 for removal ofCr(Ⅵ)[J]. Journal of Hazardous Materials, 2020, 394: 122525. doi: 10.1016/j.jhazmat.2020.122525
|
[25] |
DALILA R N, MD ARSHAD M K, GOPINATH S C B, et al. Current and future envision on developing biosensors aided by 2D molybdenum disulfide (MoS2) productions[J]. Biosensors and Bioelectronics, 2019, 132: 248-264. doi: 10.1016/j.bios.2019.03.005
|
[26] |
WANG K, CHEN P P, NIE W Y, et al. Improved photocatalytic reduction ofCr(Ⅵ) by molybdenum disulfide modified with conjugated polyvinyl alcohol[J]. Chemical Engineering Journal, 2019, 359: 1205-1214. doi: 10.1016/j.cej.2018.11.057
|
[27] |
LU W, SANG W J, JIA D N, et al. Improvement of degradation of orange G in aqueous solution by Fe2+ added in dielectric barrier discharge plasma system[J]. Journal of Water Process Engineering, 2022, 47: 102707. doi: 10.1016/j.jwpe.2022.102707
|
[28] |
ZHANG L, SHAO Q Q, XU C H. Enhanced azo dye removal from wastewater by coupling sulfidated zero-valent iron with a chelator[J]. Journal of Cleaner Production, 2019, 213: 753-761. doi: 10.1016/j.jclepro.2018.12.183
|
[29] |
DU Y F, DAI M, NAZ I, et al. Carbothermal reduction synthesis of zero-valent iron and its application as a persulfate activator for ciprofloxacin degradation[J]. Separation and Purification Technology, 2021, 275: 119201. doi: 10.1016/j.seppur.2021.119201
|
[30] |
ZHOU X L, ZHU D Q, PAN J, et al. Utilization of waste copper slag to produce directly reduced iron for weathering resistant steel[J]. ISIJ International, 2015, 55(7): 1347-1352. doi: 10.2355/isijinternational.55.1347
|
[31] |
SARFO P, DAS A, WYSS G, et al. Recovery of metal values from copper slag and reuse of residual secondary slag[J]. Waste Management, 2017, 70: 272-281. doi: 10.1016/j.wasman.2017.09.024
|
[32] |
李中臣, 王亲猛, 田庆华, 等. 铜熔炼渣制备铁精矿研究[J]. 有色金属科学与工程, 2022, 13(4): 1-9. doi: 10.13264/j.cnki.ysjskx.2022.04.001
|
[33] |
谭晓恒, 郭少毓, 喻相标, 等. 焙烧铜渣中磁铁矿的物性转变研究[J]. 有色金属科学与工程, 2020, 11(5): 83-89. doi: 10.13264/j.cnki.ysjskx.2020.05.012
|
[34] |
姜平国, 闫永播, 刘金生, 等. 铜渣在CO2-CO混合气体中焙烧实验研究[J]. 有色金属科学与工程, 2018, 9(1): 28-33. doi: 10.13264/j.cnki.ysjskx.2018.01.005
|
[35] |
WU N N, QU R J, LI C G, et al. Enhanced oxidative degradation of decabromodiphenyl ether in soil by coupling Fenton-persulfate processes: insights into degradation products and reaction mechanisms[J]. Science of the Total Environment, 2020, 737: 139777. doi: 10.1016/j.scitotenv.2020.139777
|
[36] |
WU Z L, WANG Y P, XIONG Z K, et al. Core-shell magnetic Fe3O4@Zn/Co-ZIFs to activate peroxymonosulfate for highly efficient degradation of carbamazepine[J]. Applied Catalysis B: Environmental, 2020, 277: 119136. doi: 10.1016/j.apcatb.2020.119136
|
[37] |
郑春莉, 林子深, 王辉, 等. 凹凸棒负载非晶态零价铁去除水体中的Cr(Ⅵ)[J]. 中国有色金属学报, 2022, 32(11): 3434-3447. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202211017.htm
|
[38] |
ZHOU T, ZOU X, WU X, et al. Synergistic degradation of antibiotic norfloxacin in a novel heterogeneous sonochemical Fe0/tetraphosphate Fenton-like system[J]. Ultrasonics Sonochemistry, 2017, 37: 320-327. doi: 10.1016/j.ultsonch.2017.01.015
|
[39] |
WU L, XIE Q, LV Y, et al. Degradation of methylene blue via dielectric barrier discharge plasma treatment[J]. Water, 2019, 11(9): 1818. doi: 10.3390/w11091818
|
[40] |
李小燕, 张明, 刘义保, 等. 离子强度、阴阳离子和腐殖酸对纳米零价铁去除溶液中U(Ⅵ)的影响[J]. 中国有色金属学报, 2015, 25(12): 3505-3512. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201512029.htm
|
[41] |
MASSIMA MOUELE E S, TIJANI J O, MASIKINI M, et al. Spectroscopic measurements of dissolved O3, H2O2 and OH radicals in double cylindrical dielectric barrier discharge technology: treatment of methylene blue dye simulated wastewater[J]. Plasma, 2020, 3(2): 59-91.
|
[42] |
揭诗琪, 邵继莹, 吴雨桐, 等. 生物淋滤结合类芬顿反应去除底泥中重金属[J]. 有色金属科学与工程, 2016, 7(1): 108-113. doi: 10.13264/j.cnki.ysjskx.2016.01.020
|
[43] |
DEV V V, WILSON B, NAIR K K, et al. Response surface modeling of orange-G adsorption onto surface tuned ragi husk[J]. Colloid and Interface Science Communications, 2021, 41: 100363.
|
[1] | GUO Zhongqun, ZHOU Kefan, JIN Jiefang, ZHOU Jianrong, SHANG Baihong. Reviews on the influence of the physicochemical properties of fluids on the soil seepage law[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 116-125. DOI: 10.13264/j.cnki.ysjskx.2022.04.014 |
[2] | ZHANG Linan, XUAN Xinpeng, CHENG Yuanyuan, WANG Jianqi, HUANG Sinong, LONG Bei. Effect of pH on stability of aerobic granular sludge[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 87-91. DOI: 10.13264/j.cnki.ysjskx.2019.01.014 |
[3] | YANG Shaohua, ZHANG Dancheng, ZHAO Yujuan, LI Linshan. A study on the corrosion behavior of 5083 aluminum magnesium alloy in the NaCl solutions of different pH by SECM[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 22-27. DOI: 10.13264/j.cnki.ysjskx.2018.01.004 |
[4] | HUANG Weilinga, JIANG Yingguob, WANG Zhongfenga. Design of pH value control system for NdFeB waste leaching[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 112-116. DOI: 10.13264/j.cnki.ysjskx.2017.06.018 |
[5] | YANG Shaohua, LIU Zengwei, LIN Ming, ZHAO Yujuan, LI Linshan. Corrosion behavior of 7075 aluminum alloy in NaCl solutions with different pH values[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 7-11. DOI: 10.13264/j.cnki.ysjskx.2017.04.002 |
[6] | LIANG Changli, QIN Wenqing, CHEN Jinghe, DAI Hongguang, ZHONG Shuiping. Effect of pH value on bio-oxidation of gold-containing pyrite by moderately thermophiles[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 25-28. DOI: 10.13264/j.cnki.ysjskx.2016.03.005 |
[7] | YANG You-ming, ZHANG Xiao-lin, NIE Hua-ping, LU Bo, QIAO Shan. The Chemical Behaviors of Mo(W)-H2O System Solution[J]. Nonferrous Metals Science and Engineering, 2011, 2(2): 15-18. DOI: 10.13264/j.cnki.ysjskx.2011.02.016 |
[8] | TANG Yun-zhi, WANG Ping, XU Liang, JI Fa-Ming, WANG Xiu-ping, HUANG Gui-zhen. Synthesis of Composite Tourmaline Materials and Their Application on Aquaculture Water Treatment[J]. Nonferrous Metals Science and Engineering, 2009, 23(4): 44-46. |
[9] | LI Yun-feng, HE Jia-cheng, LI Yan. On Nickel-Zinc Separation from Sulfate Solution[J]. Nonferrous Metals Science and Engineering, 2007, 21(4): 27-30. |
[10] | SHENG Pei_zhong, LEI Zhao_Wu. Experimental Investigation of Using Acidulous Water to Separate Sulphur[J]. Nonferrous Metals Science and Engineering, 2002, 16(3): 16-18. |
1. |
郗文龙,宋锦波,牛丽萍,刘素红. 大型底吹炉气含率的数值模拟. 材料与冶金学报. 2023(03): 224-229 .
![]() | |
2. |
袁启盛,张斌,戴志海,詹佳鑫,林王军,彭金鹏. 底吹炼铜喷口区多相流动特性数值模拟研究. 世界有色金属. 2021(02): 6-10 .
![]() | |
3. |
刘跃,常玲玲,李会荣,管小荣. 铝箔剪切机碎屑收集管优化设计. 有色金属科学与工程. 2021(04): 82-87+125 .
![]() | |
4. |
张妍. 有色金属富氧底吹熔炼用氧枪设计与实验研究. 世界有色金属. 2020(13): 181-183+186 .
![]() | |
5. |
郭学益,田庆华,刘咏,闫红杰,李栋,王亲猛,张佳峰. 有色金属资源循环研究应用进展. 中国有色金属学报. 2019(09): 1859-1901 .
![]() | |
6. |
万章豪,徐志峰,黄金堤,严康. 立式釜内H_2SO_4-O_2-铜阳极泥三相搅拌模拟及灰色综合评价. 有色金属科学与工程. 2018(04): 21-28 .
![]() | |
7. |
郭学益,闫书阳,王亲猛,田庆华. 氧气底吹熔炼氧枪枪位优化. 中国有色金属学报. 2018(12): 2539-2550 .
![]() |