Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LIU Yufei, LIU Yanli, WANG Xin, ZHOU Jianjun, ZU Da, JIA Meishuang, LIU Fei, MA Qiang. Microstructure and magnetic properties of high coercivity mixed rare earth permanent magnets[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 288-294. DOI: 10.13264/j.cnki.ysjskx.2023.02.017
Citation: LIU Yufei, LIU Yanli, WANG Xin, ZHOU Jianjun, ZU Da, JIA Meishuang, LIU Fei, MA Qiang. Microstructure and magnetic properties of high coercivity mixed rare earth permanent magnets[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 288-294. DOI: 10.13264/j.cnki.ysjskx.2023.02.017

Microstructure and magnetic properties of high coercivity mixed rare earth permanent magnets

More Information
  • Received Date: May 07, 2022
  • Revised Date: June 23, 2022
  • Available Online: May 05, 2023
  • The preparation of permanent magnetic materials using high-abundance mixed rare earths can not only effectively reduce the cost, but also promote the balanced utilization of rare earth resources. In this paper, high coercivity mixed rare-earth permanent magnets were prepared by grain boundary diffusion process, and the effects of heavy rare-earth Tb on the magnetic properties and microstructure of the mixed rare-earth permanent magnets were investigated. It was found that when the grain boundary diffusion heat treatment was 880 ℃ for 8 h, the magnets exhibited excellent magnetic properties, and the coercivity increased from 660.12 kA/m to 1 248.13 kA/m, and the remanent magnetization remained at 1.29 T. The diffusion of Tb elements leads to the formation of (Tb, RE)2Fe14B core-shell structure at the main-phase grain edges of the mixed rare-earth diffusion magnets, which not only enhances the magnetocrystalline anisotropy field at the main-phase grain edges, but also blocks the magnetic coupling between the grains, inhibits the growth of reverse domain nuclei, and improves the coercivity of the magnets.
  • [1]
    SAGAWA M, FUJIMURA S, TOGAWA N, et al. New material for permanent magnets on a base of Nd and Fe invited[J]. J Appl Phys, 1984, 55(6): 2083. doi: 10.1063/1.333572
    [2]
    NIU E, CHEN Z A, CHEN G A, et al. Achievement of high coercivity in sintered R-Fe-B magnets based on misch-metal by dual alloy method[J]. Journal of Applied Physics, 2014, 115(11): 113912. doi: 10.1063/1.4869202
    [3]
    LI W D, YANG L J, ZHANG Q K, et al. Effect of the grain boundary Tb/Dy diffused microstructure on the magnetic properties of sintered Nd-Fe-B magnets[J]. Journal of Magnetism and Magnetic Materials, 2020, 502: 166491. doi: 10.1016/j.jmmm.2020.166491
    [4]
    ZHOU T J, QU P P, PAN W M, et al. Sintered NdFeB magnets with Tb-Dy double-layer core/shell structure were fabricated by double alloy method and grain boundary diffusion[J]. Journal of Alloys and Compounds, 2021, 856: 158191. doi: 10.1016/j.jallcom.2020.158191
    [5]
    ZHU M G, LI W, WANG J D, et al. Influence of Ce content on the rectangularity of demagnetization curves and magnetic properties of Re-Fe-B magnets sintered by double main phase alloy method[J]. IEEE Transactions on Magnetics, 2014, 50(1): 1-4.
    [6]
    ZUO W L, ZUO S L, LI R, et al. High performance misch-metal (MM)-Fe-B magnets prepared by melt spinning[J]. Journal of Alloys and Compounds, 2017, 695: 1786-1792. doi: 10.1016/j.jallcom.2016.11.009
    [7]
    ZHANG M, LI Z B, SHEN B G, et al. Permanent magnetic properties of rapidly quenched (La, Ce)2Fe14B nanomaterials based on La-Ce mischmetal[J]. Journal of Alloys and Compounds, 2015, 651: 144-148. doi: 10.1016/j.jallcom.2015.08.044
    [8]
    雷伟凯, 曾庆文, 胡贤君, 等. 高丰度稀土永磁材料的研究现状与展望[J]. 有色金属科学与工程, 2017, 8(5): 1-13. doi: 10.13264/j.cnki.ysjskx.2017.05.001
    [9]
    HIROSAWA S, MATSUURA Y, YAMAMOTO H, et al. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals[J]. Journal of Applied Physics, 1986, 59(3): 873. doi: 10.1063/1.336611
    [10]
    冷烨旻, 裴伟, 武晓龙, 等. 50W800无取向电工钢磁性能波动分析[J]. 江西冶金, 2020, 40(5): 20-28. doi: 10.19864/j.cnki.jxye.2020.05.004
    [11]
    YAN C J, GUO S, CHEN R J, et al. Effect of Ce on the magnetic properties and microstructure of sintered didymium-Fe-B magnets[J]. IEEE Transactions on Magnetics, 2014, 50(10): 1-5.
    [12]
    JIN J Y, WANG Z, BAI G H, et al. Microstructure and magnetic properties of core-shell Nd-La-Fe-B sintered magnets[J]. Journal of Alloys and Compounds, 2018, 749: 580-585. doi: 10.1016/j.jallcom.2018.03.291
    [13]
    LI A H, XI L L, FENG H B, et al. Development of Ce-based sintered magnets: review and prospect[J]. J Iron Steel Res Int, 2020, 27(1): 1-11. doi: 10.1007/s42243-019-00287-x
    [14]
    LIU Y L, MA Q, WANG X, et al. High performance RE-Fe-B sintered magnets with high-content misch metal by double main phase process[J]. Chin Phys B, 2020, 29(10): 107504. doi: 10.1088/1674-1056/abb3f7
    [15]
    DING G F, GUO S, CHEN L, et al. Coercivity enhancement in Dy-free sintered Nd-Fe-B magnets by effective structure optimization of grain boundaries[J]. Journal of Alloys and Compounds, 2018, 735: 795-801. doi: 10.1016/j.jallcom.2017.11.115
    [16]
    屈鹏鹏, 曾亮亮, 黄祥云, 等. 晶界扩散Dy-Al-Ga对钕铁硼磁体的磁性能和微观组织的影响[J]. 有色金属科学与工程, 2019, 10(3): 64-68. doi: 10.13264/j.cnki.ysjskx.2019.03.011
    [17]
    黄祥云, 何磊, 曾亮亮, 等. 晶界扩散Dy60Co35Ga5合金对烧结钕铁硼磁体磁性能及热稳定性的影响[J]. 有色金属科学与工程, 2019, 10(2): 104-109. doi: 10.13264/j.cnki.ysjskx.2019.02.015
    [18]
    潘为茂, 刘仁辉, 周头军, 等. 烧结Nd-Fe-B磁体晶界扩散TbH2高温稳定性及其机理[J]. 有色金属科学与工程, 2020, 11(3): 109-114. doi: 10.13264/j.cnki.ysjskx.2020.03.015
    [19]
    BAE K H, LEE S R, KIM H J, et al. Effect of oxygen content of Nd-Fe-B sintered magnet on grain boundary diffusion process of DyH2 dip-coating[J]. J Appl Phys 2015, 118(20): 203902. doi: 10.1063/1.4936172
    [20]
    DUAN D W, WEI L, LI Z B, et al. Phase distribution and coercivity enhancement in (MM, Nd)-Fe-B magnets with dual-main-phase[J]. J Magn, 2021, 26: 194. doi: 10.4283/JMAG.2021.26.2.194
    [21]
    UENOHARA M, ZHENG H L, NISHIO H, et al. Magnetic properties of NdFeB sintered magnets produced by reduction-grain boundary diffusion process with heavy rare-earths compounds and Ca metal vapor[J]. Mater Trans, 2020, 61(4): 782-786. doi: 10.2320/matertrans.MT-MBW2019006
    [22]
    WANG E H, XIAO C H, HE J Y, et al. Grain boundary modification and properties enhancement of sintered Nd-Fe-B magnets by ZnO solid diffusion[J]. Appl Surf Sci, 2021, 565: 150545. doi: 10.1016/j.apsusc.2021.150545
    [23]
    LIU W Q, LI Y, WU D, et al. Coercivity enhancement mechanism of grain boundary diffused Nd-Fe-B sintered magnets by magnetic domain evolution observation[J]. Journal of Rare Earths, 2021, 39(6): 682-688. doi: 10.1016/j.jre.2020.05.011
    [24]
    ZHU W, LUO Y, WANG Z L, et al. Magnetic properties and microstructures of terbium coated and grain boundary diffusion treated sintered Nd-Fe-B magnets by magnetron sputtering[J]. Journal of Rare Earths, 2021, 39(2): 167-173. doi: 10.1016/j.jre.2020.02.017
    [25]
    ZHANG L L, ZHU M G, GUO Y J, et al. Grains orientation and restructure mechanism of Ce-contained magnets processed by reduction diffusion[J]. Journal of Alloys and Compounds, 2022, 891: 161921. doi: 10.1016/j.jallcom.2021.161921
    [26]
    ZHANG L L, ZHU M G, SONG L W, et al. The technology and mechanism of coercivity promotion of Ce-rich dual-main-phase sintered magnets[J]. Journal of Magnetism and Magnetic Materials, 2019, 490: 165414.
    [27]
    ZHU Q H, LIN Y C, MA Z K, et al. Coercivity enhancement of sintered Ce-substituted Nd-Fe-B magnets by grain boundary diffusion process of Tb[J]. Journal of Magnetism and Magnetic Materials, 2020, 515: 167274.
    [28]
    JIN J Y, CHEN W, LI M X, et al. PrAl and PrDyAl diffusion into Nd-La-Ce-Fe-B sintered magnets: critical role of surface microstructure in the magnetic performance[J]. Appl Surf Sci, 2020, 529: 147028.
    [29]
    ZHOU T J, GUO Y, XIE G Q, et al. Coercivity and thermal stability enhancement of NdFeB magnet by grain boundary diffusion Tb80Al20 alloys[J]. Intermetallics, 2021, 138: 107335.
    [30]
    MA T Y, YAN M, WU K Y, et al. Grain boundary restructuring of multi-main-phase Nd-Ce-Fe-B sintered magnets with Nd hydrides[J]. Acta Materialia, 2018, 142: 18-28.
  • Related Articles

    [1]PAN Weimao, LIU Renhui, ZHOU Toujun, QU Pengpeng, TAO Li, CHEN Jiuchang, QIU Jianmin, ZHONG Zhenchen. Study on the high-temperature stability and mechanism of sintered Nd-Fe-B magnet by the grain boundary diffusion of TbH2[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 109-114. DOI: 10.13264/j.cnki.ysjskx.2020.03.015
    [2]XIE Weicheng, TAO Li, ZHONG Minglong, LIU Renhui, NI Gang, HU Xianjun, ZHONG Zhenchen. Structure and magnetic properties of TbCu7-type SmCo7-xHfx alloys[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 101-105. DOI: 10.13264/j.cnki.ysjskx.2019.05.016
    [3]QU Pengpeng, ZENG Liangliang, HUANG Xiangyun, HE Lei, DU Chang, LI Jiajie. Effect of grain boundary diffusing Dy-Al-Ga on the microstructure and magnetic properties of NdFeB magnets[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 64-68. DOI: 10.13264/j.cnki.ysjskx.2019.03.011
    [4]HUANG Xiangyun, HE Lei, ZENG Liangliang, DU Chang, QU Pengpeng, ZHOU Toujun, YU Xiaoqiang, ZHONG Zhenchen, LI Jiajie. Effect of grain boundary diffusion Dy60Co35Ga5 alloys on magnetic properties and thermal stability of sintered NdFeB magnets[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 104-109. DOI: 10.13264/j.cnki.ysjskx.2019.02.015
    [5]QI Zhiqi, YU Xi, DU Junfeng, WANG Liangliang, LIU Bin, PANG Zaisheng, LI Jiajie, WANG Gongping. Effect of Nd Substitution for sintered Pr-Nd-Fe-B magnet corrosion resistance[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 77-79, 104. DOI: 10.13264/j.cnki.ysjskx.2018.01.013
    [6]AI Hao, QI Ting-ting, BAO Jun, ZHANG Cai-wei, WEN He-rui. Research advances of rare earth Dy’s single molecule magnets[J]. Nonferrous Metals Science and Engineering, 2013, 4(6): 82-91. DOI: 10.13264/j.cnki.ysjskx.2013.06.001
    [7]CAI Xu. On the Application of Slon High-gradient Magnetic Separator in Cobalt Oxide Mine[J]. Nonferrous Metals Science and Engineering, 2009, 23(2): 16-17,22.
    [8]QIAN Zhi-hua, OU YANG Ling-yu. Application of Magnetic-Flotation Flowsheet in Wuyang Mining Company[J]. Nonferrous Metals Science and Engineering, 2008, 22(2): 12-15, 41.
    [9]YUAN Yuan_ming. Experimental Investigation of Separating Whole grade Ilmenite by SLon Magnetic Separators[J]. Nonferrous Metals Science and Engineering, 2002, 16(3): 19-21.
    [10]LIN He-cheng. New development of rare earth permanent magnet in China[J]. Nonferrous Metals Science and Engineering, 2001, 15(2): 19-22.

Catalog

    Article Metrics

    Article views (208) PDF downloads (20) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return