Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
CHEN Jun, ZHANG Wenjuan, MA Baozhong, WANG Chengyan, CHEN Yongqiang. Research progress of mechanical activation in solid phase reaction[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 13-21. DOI: 10.13264/j.cnki.ysjskx.2021.01.003
Citation: CHEN Jun, ZHANG Wenjuan, MA Baozhong, WANG Chengyan, CHEN Yongqiang. Research progress of mechanical activation in solid phase reaction[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 13-21. DOI: 10.13264/j.cnki.ysjskx.2021.01.003

Research progress of mechanical activation in solid phase reaction

More Information
  • Received Date: September 09, 2020
  • Published Date: February 27, 2021
  • Mechanical activation is a clean, efficient and low energy-consuming preparation and strengthening technology that can improve the activity of solid materials, accelerate the reaction, and reduce reaction dependency on conditions, such as temperature and reagent dosage. The paper summarized the research of mechanical activation in solid phase reaction, including the principles of mechanical activation, the change of energy storage, the influence of mechanical activation on the properties of materials, and further briefly introduced its application. And it is instructive to the future research into the application of mechanical activation in solid state reaction.
  • [1]
    BENJAMIN J S. Mechanical alloying-A perspective[J]. Metal Powder Report, 1990, 45(2): 122-127. doi: 10.1016/S0026-0657(10)80124-9
    [2]
    伍凌, 陈嘉彬, 钟胜奎, 等. 机械活化-盐酸常压浸出钛铁矿的影响[J]. 中国有色金属学报, 2015, 25(1): 211-219. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201501029.htm
    [3]
    CONG S, LI Y, RAN G, et al. Microstructure and its effect on mechanical and thermal properties of Al-based Gd2O3 MMCs used as shielding materials in spent fuel storage[J]. Ceramics International, 2020, 46(9): 12986-12995. doi: 10.1016/j.ceramint.2020.02.068
    [4]
    ROY D, CHAKRABORTY S, GUPTA A K, et al. Synergistic effect of Nb and Zr addition in thermal stabilization of nano-crystalline Cu synthesized by ball milling[J]. Materials Letters, 2020, 271: 127780-127784. doi: 10.1016/j.matlet.2020.127780
    [5]
    马保中, 王成彦, 陈永强, 等. 镁质氧化镍矿非熔融金属化还原-磁选镍铁工业试验研究[J]. 有色金属科学与工程, 2018, 9(1): 34-38. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201801006
    [6]
    MUCSI G. A review on mechanical activation and mechanical alloying in stirred media mill[J]. Chemical Engineering Research and Design, 2019, 148: 460-474. doi: 10.1016/j.cherd.2019.06.029
    [7]
    赵中伟, 孙培梅, 李运姣, 等. 机械活化强化冶金反应的几个问题[J]. 中南工业大学学报, 1995(6): 757-760. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD506.011.htm
    [8]
    ZOLTAN J A. Aspects of mechanochemical activation in terms of comminution theory[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 141(3): 449-462. doi: 10.1016/S0927-7757(98)00245-3
    [9]
    刘维平. 机械活化对矿浆电解制备细铜粉的影响[J]. 粉末冶金工业, 2012, 22(4): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201204006.htm
    [10]
    林辉, 郑大鹏, 李端乐, 等. 助磨剂与矿物相作用机理的探讨[C]//中国硅酸盐学会中国水泥协会. 2014年中国水泥协会水泥助磨剂年会论文集, 2014: 52-55.
    [11]
    谢冬冬, 侯英, 盖壮, 等. 助磨剂对氧化铁矿石磨矿动力学行为的影响[J]. 中南大学学报(自然科学版), 2020, 51(2): 279-286. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202002001.htm
    [12]
    苏清发, 陈永瑞, Jewell B, 等. 超细干法脱硫灰在水泥混凝土中的应用研究[J]. 新型建筑材料, 2019, 46(12): 1-4, 54. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201912001.htm
    [13]
    张永娟, 郇坤, 冯蕾. 机械活化和粉磨助剂对矿渣微粉作用的研究[J]. 粉煤灰综合利用, 2013(1): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-FMLE201301007.htm
    [14]
    刘培, 刘博古, 张倩倩, 等. 机械球磨法在纳米储氢材料制备中的应用[J]. 化工新型材料, 2019, 47(3): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201903004.htm
    [15]
    肖庆飞, 康怀斌, 肖珲, 等. 碎磨技术的研究进展及其应用[J]. 铜业工程, 2016(1): 15-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TYGC201601007.htm
    [16]
    吴胜利, 常凤, 张建良, 等. 机械活化烧结粉尘和高炉粉尘的物理化学性质[J]. 钢铁, 2017, 52(4): 84-93. https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201704018.htm
    [17]
    布林朝克, 郭婷, 赵瑞超, 等. 机械活化铁氧化物的碳热还原热力学[J]. 金属矿山, 2012(12): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201212014.htm
    [18]
    蒋武锋, 赵朔, 郝素菊, 等. 碳机械活化对ZnO和FexOy直接还原的影响[J]. 过程工程学报, 2017, 17(2): 362-366.
    [19]
    TROMANS D, MEECH J A. Enhanced dissolution of minerals: stored energy, amorphism and mechanical activation[J]. Minerals Engineering, 2001, 14(11): 1359-1377. doi: 10.1016/S0892-6875(01)00151-0
    [20]
    TROMANS D, MEECH J A. Fracture toughness and surface energies of covalent minerals: theoretical estimates[J]. Minerals Engineering, 2003, 17(1): 1-15. http://www.sciencedirect.com/science/article/pii/S0892687503003364
    [21]
    张腾, 杜双明, 牛立斌, 等. 机械活化对镁金属真空碳热还原反应的强化作用初步研究[J]. 轻金属, 2015(2): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS201502011.htm
    [22]
    刘艳华, 陈国宝, 杨洪英, 等. 机械活化强化载金硫化矿浸出的研究进展[J]. 有色金属(冶炼部分), 2018(3): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-METE201803012.htm
    [23]
    姚金环, 黎铉海, 潘柳萍, 等. 机械活化强化矿物浸出过程的研究进展[J]. 现代化工, 2011, 31(7): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201107007.htm
    [24]
    黄青云, 向俊一, 裴贵尚, 等. 机械活化强化钒渣钙化提钒工艺[J]. 中国有色金属学报, 2020, 30(4): 858-865. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202004016.htm
    [25]
    BOLOKANG A S, MATHABATHE M N, MATHEBULA C, et al. Thermal analysis and morphology of the ball-milled Ti-Ni powder[J/OL]. Materials Today: Proceedings, (2020-03-09),http://dx.doi.org/10.1016/j.matpr.2020.02.351.
    [26]
    BOLOKANG A S, PHASHA M J. Formation of titanium nitride produced from nanocrystalline titanium powder under nitrogen atmosphere[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(5): 610-615. doi: 10.1016/j.ijrmhm.2010.05.008
    [27]
    王晨, 高宏, 应媛芳, 等. 机械化学法活化磷矿的机理研究[J]. 硅酸盐通报, 2018, 37(12): 4007-4011. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201812050.htm
    [28]
    钟翔, 哈敏, 董宁利, 等. 银粉球磨过程中的晶粒变化研究[J]. 贵金属, 2019, 40(增刊1): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSZ2019S1015.htm
    [29]
    YAZOVSKIKH K A, SYUGAEV A V, SHAKOV A A, et al. Surface modification of iron powder with siloxane block copolymer and sodium dodecyl sulfate under wet ball milling[J]. Materials Today: Proceedings, 2020, 25(3): 509-520. http://www.sciencedirect.com/science/article/pii/S2214785320301449
    [30]
    闵小波, 王密, 梁彦杰, 等. 含镉废渣机械力化学稳定研究[J]. 有色金属科学与工程, 2015, 6(2): 7-13. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201502002
    [31]
    张腾, 王苗, 牛立斌, 等. 机械活化作用下MgO-CaO硅热还原反应的反应热力学分析及实验研究[J]. 轻金属, 2019(9): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS201909018.htm
    [32]
    魏博, 张一敏, 包申旭. 机械活化提高石煤提钒尾渣活性[J]. 金属矿山, 2017(2): 188-192. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201702035.htm
    [33]
    蒋灶, 徐中慧, 徐亚红, 等. 钢渣-粉煤灰机械活化制备地聚合物水泥的耐盐腐蚀性能研究[J]. 混凝土与水泥制品, 2017(9): 88-91. https://www.cnki.com.cn/Article/CJFDTOTAL-HNTW201709022.htm
    [34]
    崔孝炜, 冷欣燕, 南宁, 等. 机械力活化对钢渣粒度分布和胶凝性能的影响[J]. 硅酸盐通报, 2018, 37(12): 3821-3 826. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201812018.htm
    [35]
    LYU X, YAO G, WANG Z, et al. Hydration kinetics and properties of cement blended with mechanically activated gold mine tailings[J]. Thermochimica Acta, 2020, 683: 178457-178464. doi: 10.1016/j.tca.2019.178457
    [36]
    STROGANVO V, SAGADEEV E, IBRAGIMOV R, et al. Mechanical activation effect on the biostability of modified cement compositions[J]. Construction and Building Materials, 2020, 246: 118506-118517. doi: 10.1016/j.conbuildmat.2020.118506
    [37]
    ZHANG C, MIN X, CHAI L, et al. Mechanical activation-assisted reductive leaching of cadmium from zinc neutral leaching residue using sulfur dioxide[J]. JOM, 2015, 67(12): 3010-3021. doi: 10.1007/s11837-015-1623-1
    [38]
    赵中伟, 龙双, 陈爱良, 等. 难选高硅型氧化锌矿机械活化碱法浸出研究[J]. 中南大学学报(自然科学版), 2010, 41(4): 1246-1250. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201004006.htm
    [39]
    TAHA M A, YOUNESS R A, ZAWRAH M F. Review on nanocomposites fabricated by mechanical alloying[J]. International Journal of Minerals Metallurgy and Materials, 2019, 26(9): 1047-1058. doi: 10.1007/s12613-019-1827-4
    [40]
    KASRAEE K, TAYEBIFARD S A, ROGHANI H, et al. Preparation of B4C-SiC-HfB2 nanocomposite by mechanically activated combustion synthesis[J]. Ceramics International, 2020, 46(8): 12288-12295. doi: 10.1016/j.ceramint.2020.01.279
    [41]
    ZHENG Y L, WAN Y S, CHEN J J, et al. MgO modified biochar produced through ball milling: A dual-functional adsorbent for removal of different contaminants[J]. Chemosphere, 2020, 243: 125344-125369. doi: 10.1016/j.chemosphere.2019.125344
    [42]
    ZHOU S X, ZHANG Q Q, RAN W X, et al. Evolution of magnesium during reactive milling under hydrogen atmosphere with crystallitic carbon as milling aid[J]. Journal of Alloys and Compounds, 2013, 581: 472-478. doi: 10.1016/j.jallcom.2013.07.091
    [43]
    商雪坤, 肖会芳, 王西涛. 化学机械合金化方法制备Cu-Nb系氧化物强化合金[J]. 稀有金属, 2020, 44(2): 122-126. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS202002002.htm
    [44]
    ROY D, CHAKRABORTY S, GUPTA A K, et al. Synergistic effect of Nb and Zr addition in thermal stabilization of nano-crystalline Cu synthesized by ball milling[J]. Materials Letters, 2020, 271: 127780-127784. doi: 10.1016/j.matlet.2020.127780
    [45]
    WANG C, HU H M, YAN S S, et al. Activating Bi2O3 by ball milling to induce efficiently oxygen vacancy for incorporating iodide anions to form BiOI[J]. Chemical Physics, 2020, 533: 110739-1107 45. http://www.sciencedirect.com/science/article/pii/S0301010420301567
    [46]
    WAHSH M M S, KHATTAB R M, ZAWRAH M F. Sintering and technological properties of alumina/zirconia/nano-TiO2 ceramic composites[J]. Materials Research Bulletin, 2013, 48(4): 1411-1414. http://www.sciencedirect.com/science/article/pii/S0025540812009804
    [47]
    ZAWRAH M F, TAHA M A, MOSTAFA H A. In-situ formation of Al2O3/Al core-shell from waste material: Production of porous composite improved by graphene[J]. Ceramics International, 2018, 44(9): 10693-10699. http://www.sciencedirect.com/science/article/pii/S0272884218306631
    [48]
    NAKASHIMA Y, RAZAVI-KHOSROSHAHI H, ISHIDA H, et al. Non-firing ceramics: Activation of silica powder surface by a planetary ball milling[J]. Advanced Powder Technology, 2019, 30(2): 461-465. http://www.sciencedirect.com/science/article/pii/S0921883118308872
    [49]
    NAKASHIMA Y, RAZAVI-KHOSROSHAHI H, TAKAI C, et al. Non-firing ceramics: Effect of adsorbed water on surface activation of silica powder via ball milling treatment[J]. Advanced Powder Technology, 2019, 30(6): 1160-1164. http://www.sciencedirect.com/science/article/pii/S0921883119300639
    [50]
    BEASON M T, PAULS J M, GUNDUZ I E, et al. Shock-induced reaction synthesis of cubic boron nitride[J]. Applied Physics Letters, 2018, 112(17): 171903.1-171903.5.
    [51]
    朱春城, 张幸红, 徐强, 等. 自蔓延高温合成法制备TiB2/TiC复合陶瓷[J]. 材料工程, 2002(2): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC200202003.htm
  • Related Articles

    [1]PAN Weimao, LIU Renhui, ZHOU Toujun, QU Pengpeng, TAO Li, CHEN Jiuchang, QIU Jianmin, ZHONG Zhenchen. Study on the high-temperature stability and mechanism of sintered Nd-Fe-B magnet by the grain boundary diffusion of TbH2[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 109-114. DOI: 10.13264/j.cnki.ysjskx.2020.03.015
    [2]XIE Weicheng, TAO Li, ZHONG Minglong, LIU Renhui, NI Gang, HU Xianjun, ZHONG Zhenchen. Structure and magnetic properties of TbCu7-type SmCo7-xHfx alloys[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 101-105. DOI: 10.13264/j.cnki.ysjskx.2019.05.016
    [3]QU Pengpeng, ZENG Liangliang, HUANG Xiangyun, HE Lei, DU Chang, LI Jiajie. Effect of grain boundary diffusing Dy-Al-Ga on the microstructure and magnetic properties of NdFeB magnets[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 64-68. DOI: 10.13264/j.cnki.ysjskx.2019.03.011
    [4]HUANG Xiangyun, HE Lei, ZENG Liangliang, DU Chang, QU Pengpeng, ZHOU Toujun, YU Xiaoqiang, ZHONG Zhenchen, LI Jiajie. Effect of grain boundary diffusion Dy60Co35Ga5 alloys on magnetic properties and thermal stability of sintered NdFeB magnets[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 104-109. DOI: 10.13264/j.cnki.ysjskx.2019.02.015
    [5]QI Zhiqi, YU Xi, DU Junfeng, WANG Liangliang, LIU Bin, PANG Zaisheng, LI Jiajie, WANG Gongping. Effect of Nd Substitution for sintered Pr-Nd-Fe-B magnet corrosion resistance[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 77-79, 104. DOI: 10.13264/j.cnki.ysjskx.2018.01.013
    [6]AI Hao, QI Ting-ting, BAO Jun, ZHANG Cai-wei, WEN He-rui. Research advances of rare earth Dy’s single molecule magnets[J]. Nonferrous Metals Science and Engineering, 2013, 4(6): 82-91. DOI: 10.13264/j.cnki.ysjskx.2013.06.001
    [7]CAI Xu. On the Application of Slon High-gradient Magnetic Separator in Cobalt Oxide Mine[J]. Nonferrous Metals Science and Engineering, 2009, 23(2): 16-17,22.
    [8]QIAN Zhi-hua, OU YANG Ling-yu. Application of Magnetic-Flotation Flowsheet in Wuyang Mining Company[J]. Nonferrous Metals Science and Engineering, 2008, 22(2): 12-15, 41.
    [9]YUAN Yuan_ming. Experimental Investigation of Separating Whole grade Ilmenite by SLon Magnetic Separators[J]. Nonferrous Metals Science and Engineering, 2002, 16(3): 19-21.
    [10]LIN He-cheng. New development of rare earth permanent magnet in China[J]. Nonferrous Metals Science and Engineering, 2001, 15(2): 19-22.

Catalog

    Article Metrics

    Article views (150) PDF downloads (11) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return