Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHANG Zhenmin1, JIA Jingwen, ZHANG Mengfan, LIU Zhen, YU Changlin, YANG Kai. Research progress of double perovskite photocatalyst materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 14-22. DOI: 10.13264/j.cnki.ysjskx.2020.04.003
Citation: ZHANG Zhenmin1, JIA Jingwen, ZHANG Mengfan, LIU Zhen, YU Changlin, YANG Kai. Research progress of double perovskite photocatalyst materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 14-22. DOI: 10.13264/j.cnki.ysjskx.2020.04.003

Research progress of double perovskite photocatalyst materials

More Information
  • Received Date: March 21, 2020
  • Published Date: August 30, 2020
  • Perovskite materials have some distinct advantages, e.g. stable chemical structure, abundant types, good adjustability. Therefore, perovskite materials are widely used in photocatalys is technology. However, simple perovskites are confronted with some shortcomings such as poor light absorption, large band gap, and poor moisture resistance in photocatalytic applications. Recent investigations show that compared with simple perovskites, double perovskites have better stability, more complex atomic environments, larger composition space, and can accommodate high-valence elements. Therefore, the double perovskiteshave aroused intensively studied. This paper mainly described the research progress of double perovskite photocatalysts in recent years, including the ordered double perovskite, lead-free halide double perovskite, complex double perovskite, oxygen-deficient double perovskite and so on. The photocatalytic mechanism of the double perovskite was introduced and analyzed. Double perovskite effectively promotes photo-generated electron-hole separation through improving the crystal structure and absorption properties of catalysts. Thus, the photocatalytic activity is expected to be increasing easy. Finally, the research direction and prospect of double perovskite photocatalysts were proposed.
  • [1]
    刘仁月, 吴榛, 白羽, 等.微米球光催化剂在环境净化及能源转化的研究进展[J].有色金属科学与工程, 2016, 7(6): 62-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxysjs201606011
    [2]
    李笑笑, 杨凯, 曾德彬, 等.微波水热法制备棒状BiPO4催化剂及其光催化性能研究[J].有色金属科学与工程, 2019, 10(4) :78-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxysjs201904013
    [3]
    张萌迪, 陈范云, 马小帅, 等.纳微结构Ag2CO3光催化材料的制备及其在光催化的应用[J].有色金属科学与工程, 2019, 10(2):52-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxysjs201902008
    [4]
    何洪波, 薛霜霜, 余长林.钨基半导体光催化剂的研究进展[J].有色金属科学与工程, 2015, 6(5):32-39.
    [5]
    薛霜霜, 何洪波, 吴榛, 等.研磨-焙烧法制备BiOI/BiOBr异质结光催化剂及其光催化性能[J].有色金属科学与工程, 2017, 8(1): 86-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxysjs201701015
    [6]
    SONG T, ZHANAG L, ZHANG P Y, et al. Stable and improved visible light photocatalytic hydrogen evolution using copper(II)-organic framework: Engineering the crystal structures[J]. Journal of Materials Chemistry A, 2017(5): 6013-6018. http://pubs.rsc.org/-/content/articlehtml/2017/ta/c7ta00095b
    [7]
    WANG A, YANG H W, SONG T, et al. Plasmon mediated Fe-O in octahedral site of cuprospinel by Cu NPs for photocatalytic hydrogen evolution[J]. Nanoscale, 2017(9): 15760-15765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=670d71f0d77118982cf5e9c2be3af781
    [8]
    SONG T, HUO J P, LIAO T, et al. Fullerene [C60] modified Cr2-xFexO3 nanocomposites for enhanced photocatalytic activity under visible light irradiation[J]. Chemical Engineering Journal, 2016, 287:359-366. doi: 10.1016/j.cej.2015.11.030
    [9]
    ZENG J, SONG T, LV M X, et al. Plasmonic photocatalyst Au/g-C3N4/NiFe2O4 nanocomposites for enhanced visible-light-driven photocatalytic hydrogen evolution[J]. RSC Adv, 2016(6):54964-54975. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d73b63e7da537537fc2788f9c79f1946
    [10]
    SONG T, ZHANG P Y, ZENG J, et al. Boosting the photocatalytic H2 evolution activity of Fe2O3 polymorphs (α-, γ- and β-Fe2O3) by fullerene [C60]-modification and dye-sensitization under visible light irradiation[J]. RSC Adv, 2017(7):29184-29192. doi: 10.1039/C7RA03451B
    [11]
    ZAHNG P Y, SONG T, WANG T T, et al. Enhancement of hydrogen production of a Cu-TiO2 nanocomposite photocatalyst combined with broad spectrum absorption sensitizer Erythrosin B[J]. RSC Adv, 2017(7):17873-17881. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e9bd37e2bc35ca7208a7093499e1db36
    [12]
    SONG T, ZHANG P Y, WANG T T, et al. Constructing a novel strategy for controllable synthesis of corrosion resistant Ti3+ self-doped titanium-silicon materials with efficient hydrogen evolution activity from simulated seawater[J]. Nanoscale, 2018, 10, 2275-2284. doi: 10.1039/C7NR07095K
    [13]
    MENG N, MICHAEL K H L, DENNIS Y C L, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production[J]. Renewable and Sustainable Energy Reviews, 2007, 11(3): 401-425. doi: 10.1016/j.rser.2005.01.009
    [14]
    YU C L, ZHOU W Q, ZHU L H, at al. Integrating plasmonic Au nanorods with dendritic like α-Bi2O3/Bi2O2CO3 heterostructures for superior visible-light-driven photocatalysis[J]. Applied Catalysis B: Environmental, 2016, 184: 1-11. doi: 10.1016/j.apcatb.2015.11.026
    [15]
    YU C L, WU Z, LIU R Y, et al. Novel fluorinated Bi2MoO6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination[J]. Applied Catalysis B: Environmental, 2017, 209: 1-11. doi: 10.1016/j.apcatb.2017.02.057
    [16]
    ZENG D B, YANG K, YU C L, et al. Phase transformation and microwave hydrothermal guided a novel double Z-scheme ternary vanadate heterojunction with highly efficient photocatalytic performance[J]. Applied Catalysis B: Environmental, 2018, 237: 449-463. doi: 10.1016/j.apcatb.2018.06.010
    [17]
    HUO J P, FANG L T, LEI Y L, et al. Facile preparation of yttrium and aluminum co-doped ZnO via a sol-gel route for photocatalytic hydrogen production[J]. Journal of Materials Chemistry A, 2014(2):11040-11044. http://www.ingentaconnect.com/content/rsoc/20507488/2014/00000002/00000029/art00009
    [18]
    YU C L, CHEN F Y, ZENG D B, et al. A facial phase transformation strategy for fabrication of novel Z-scheme ternary heterojunctions with efficient photocatalytic properties[J]. Nanoscale, 2019, 11(16): 7720-7733. doi: 10.1039/C9NR00709A
    [19]
    LIU Z, TIAN J, ZENG D B, et al. A facile microwave-hydrothermal method to fabricate B doped ZnWO4 nanorods with high crystalline and highly efficient photocatalytic activity[J]. Material Research Bulletin, 2017, 94: 298-306. doi: 10.1016/j.materresbull.2017.06.021
    [20]
    HE H B, XUE S S, WU Z, et al. Sonochemical fabrication, characterization and enhanced photocatalytic performance of Ag2S/Ag2WO4 composite microrods[J]. Chinese Journal of Catalysis, 2016, 37(11): 1841-1850. doi: 10.1016/S1872-2067(16)62515-9
    [21]
    YU C L, WEI L F, ZHOU W Q, et al. A visible-light-driven core-shell like Ag2S/Ag2CO3 composite photocatalyst with high performance in pollutants degradation[J]. Chinese Journal of Catalysis, 2016, 157: 250-261. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1c70092a80937b76d266e8c0cfcd4b7b
    [22]
    YU C L, WEI L F, LI X, et al. Synthesis and characterization of Ag/TiO2-B nanosquares with high photocatalytic activity under visible light irradiation[J]. Materials Science and Engineering, 2013, 178: 344-348. doi: 10.1016/j.mseb.2013.01.015
    [23]
    DOMEN K, NAITO S, SOMA M, et al. Photocatalytic decomposition of water vapour on an NiO-SrTiO3 catalyst[J]. Journal of Physical Chemistry, 1982, 86(18): 3657-3661. doi: 10.1021/j100215a032
    [24]
    SHI J W, GUO L J. ABO3-based photocatalysts for water splitting[J]. Progress in Natural Science: Materials International, 2012, 22(6): 592-615. doi: 10.1016/j.pnsc.2012.12.002
    [25]
    陆玲玮, 孙小琴, 汪亚威, 等.钛基钙钛矿型光催化材料的研究进展[J].应用化学, 2017, 34(11): 1221-1239. http://d.wanfangdata.com.cn/Periodical/yyhx201711001
    [26]
    EWELINA G. Selected perovskite oxides: characterization, preparation and photocatalytic properties-A review[J]. Applied Catalysis B: Environmental, 2016, 186: 97-126. doi: 10.1016/j.apcatb.2015.12.035
    [27]
    WEI W, MOSES O T, SHAO Z P. Research progress of perovskite materials in photocatalysis-and photovoltaics-related energy conversion and environmental treatment[J]. Chemical Society Reviews, 2015, 44: 5371-5408. doi: 10.1039/C5CS00113G
    [28]
    ZHANG G, LIU G, WANG L Z, et al. Inorganic perovskite photocatalysts for solar energy utilization[J]. Chemical Society Reviews, 2016, 445: 5951-5984. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e9647625d93b4b3cea698e7f079378ab
    [29]
    PARIDA K M, REDDY K H, MARTHA S, et al. Fabrication of nanocrystalline LaFeO3: An efficient sol-gel auto-combustion assisted visible light responsive photocatalyst for water decomposition[J]. Hydrogen Energy, 2010, 35(22): 12161-12168. doi: 10.1016/j.ijhydene.2010.08.029
    [30]
    LU L W, LV M L, WANG D, et al. Efficient photocatalytic hydrogen production over solid solutions Sr1-xBixTi1-xFexO3 (0≤x≤0.5) [J]. Applied Catalysis B: Environmental, 2017, 200: 412-419. doi: 10.1016/j.apcatb.2016.07.035
    [31]
    YADAV A A, HUNGE Y M, MATHE V L, et al. Photocatalytic degradation of salicylic acid using BaTiO3 photocatalyst under ultraviolet light illumination[J]. Journal of Materials Science- Materials in Electronics, 2018, 29(17): 15069-15073. doi: 10.1007/s10854-018-9646-3
    [32]
    KANHERE P, CHEN Z. A review on visible light active perovskite-based photocatalysts[J]. Molecules, 2014, 19: 19995-20022. doi: 10.3390/molecules191219995
    [33]
    XU X M, ZHONG Y J, SHAO Z P. Double perovskites in catalysis, electrocatalysis, and photo(electro)catalysis[J]. Trends in Chemistry, 2019, 4(1): 410-424. doi: 10.1016/j.trechm.2019.05.006
    [34]
    HU R S, LI C, WANG X, et al. Photocatalytic activities of LaFeO3 and La2FeTiO6 in p-chlorophenol degradation under visible light[J]. Catalysis Communications, 2012, 29:35-39. doi: 10.1016/j.catcom.2012.09.012
    [35]
    TANAKA H, MISONO M. Advances in designing perovskite catalysts[J]. Current Opinion in Solid State and Materials Science, 2001, 5(5): 381-387. doi: 10.1016/S1359-0286(01)00035-3
    [36]
    TANG Y R, TAO Y W, WANG Q, et al. Mesoporous double-perovskite LaAMnNiO6(A=La, Pr, Sm) photothermal synergistic degradation of gaseous toluene[J]. Journal of Materials Research, 2019, 34(20): 3439-3449. doi: 10.1557/jmr.2019.273
    [37]
    贾德伟, 卢艳丽, 胡婷婷. SrTiO3光催化材料的研究进展[J].材料导报, 2014, 27 (3): 8-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb201405002
    [38]
    王哲焱, 冯涛, 张学俊.有机-无机杂化钙钛矿材料的研究进展[J].现代化工, 2019, 39 (1): 72-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdhg201901015
    [39]
    CASTELLI I E, JUAN M G L, THYGESEN K S, et al. Bandgap calculations and trends of organometal halide perovskites[J]. APL Materials, 2014, 8(2): 081514.
    [40]
    NING W H, WANG F, WU B, et al. Long electron-hole diffusion length in high-quality lead-free double perovskite fFilms[J]. Advanced Materials, 2018, 30(20): 1706246.
    [41]
    张慧敏, 胡瑞生, 白雅琴, 等.单双钙钛矿型甲烷燃烧催化剂制备方法及应用进展[J].化工进展, 2009, 28(增刊1): 20-23.
    [42]
    安宏乐, 杨秋华, 邸学倩.双钙钛矿型复合氧化物A2B'B''O6的最新合成方法[J].化工进展, 2016, 35(8): 2495-2499. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201608030
    [43]
    VASALA S, KARPPINEN M. A2B′B′′O6 perovskites: A review[J]. Progress in Solid State Chemistry, 2015, 43:1-36. doi: 10.1016/j.progsolidstchem.2014.08.001
    [44]
    IWAKURA H, EINAGA H, TERAOKA Y. Photocatalytic properties of ordered double perovskite oxides[J]. Journal of Novel Carbon Resource Sciences, 2011(3): 1-5. doi: 10.1007/BF00930901
    [45]
    胡瑞生, 谭立志, 王欣, 等.掺杂型稀土双钙钛矿光催化剂La2FeTiO6葡萄糖络合法制备与表征[J].中国稀土学报, 2012, 30(5): 550-555. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgxtxb201205006
    [46]
    HU R S, DING R R, CHEN J, et al. Preparation and catalytic activities of the novel double perovskite-type oxide La2CuNiO6 for methane combustion[J]. Catalysis Communications, 2012, 21: 38-41. doi: 10.1016/j.catcom.2012.01.008
    [47]
    LI X Y, YAO Z F, ZHANG L Y, et al. Generation of oxygen vacancies on Sr2FeMoO6 to improve its photocatalytic performance through a novel preparation method involving pH adjustment and use of surfactant[J]. Applied Surface Science, 2019, 480: 262-275. doi: 10.1016/j.apsusc.2019.02.115
    [48]
    CHEN H M, XU X X. Ruddlesden-popper compounds in the double-perovskite family Sr2FeTaO6(SrO)n(n=0, 1, 2) and their photocatalytic properties[J]. Applied Catalysis B: Environmental, 2017, 206: 35-43. doi: 10.1016/j.apcatb.2017.01.011
    [49]
    BORSE P H, CHO C R, YU S M, et al. Improved photolysis of water from Ti incorporated double perovskite Sr2FeNbO6 lattice[J]. Bulletin of the Korean Chemical Society, 2012, 33(10): 3407-3412. doi: 10.5012/bkcs.2012.33.10.3407
    [50]
    BORSE P H, LIM K T, YOON J H, et al. Investigation of the physico-chemical properties of Sr2FeNb1-xWxO6 (0.0≤x≤0.1) for visible-light photocatalytic water-splitting applications[J]. Journal of Korean Physical Society, 2014, 64(2): 295-300. doi: 10.3938/jkps.64.295
    [51]
    LV M L, WANG Y W, WANG R N, et al. Structural dependence of the photocatalytic properties of double perovskite compounds A2InTaO6(A=Sr or Ba) doped with nickel[J]. Physical Chemistry Chemical Physics, 2016, 18: 21491-21499. doi: 10.1039/C6CP03522A
    [52]
    安宏乐, 于婷婷.稀土双钙钛矿La2CoAlO6的制备及其光催化活性研究[J].天津化工, 2018, 32(6): 9-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjhg201806003
    [53]
    翟永清, 乔静, 游志江, 等. Sr2FeMoO6的微波合成及对酸性黑10B的降解性能研究[J].化工新型材料, 2012, 40(3): 106-109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl201203034
    [54]
    JEONG E D, YU S M, YOON J Y, et al. Efficient visible light photocatalysis in cubic Sr2FeNbO6[J]. Journal of Ceramic Processing Research, 2012, 13(3): 305-309. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=45c29db0f86e1e57ef413952fc1a91ae
    [55]
    FERARU S, BORHAN A I, SAMOILA P, et al. Development of visible-light-driven Ca2Fe1-xSmxBiO6 double perovskites for decomposition of Rhodamine 6 G dye[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 308(7): 1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c9bc9fc932209ba65697aa6a5b0c2325
    [56]
    SONG K, YANG J, JIANG P F, et al. Ba2InTaO6- A Partially B-Site-Ordered double perovskite for overall water splitting[J]. European Journal of Inorganic Chemistry, 2015, 35: 5786-5792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=76d4f7de1babf15760f2858caef62fd2
    [57]
    LUO Y, XUE J W, ZHU X D, et al. Enhanced photocatalytic oxygen evolution over Mo-doped Ca2NiWO6 perovskite photocatalyst under visible light irradiation[J]. RSC Advances, 2017(7): 5821-5826. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f072416a78bb9aa7fc88eab6be9bd48
    [58]
    LI D F, ZHENG J, ZOU Z G. Band structure and photocatalytic properties of perovskite-type conpound Ca2NiWO6 for water splitting[J]. Journal of Physics and Chemistry of Solids, 2006, 67: 801-806. doi: 10.1016/j.jpcs.2005.10.182
    [59]
    王桂赟, 安红强, 张帅, 等. Sr2CaMO6(M=W, Mo)的合成及光催化性能[J].兰州理工大学学报, 2010, 36(1): 57-62. http://www.cqvip.com/Main/Detail.aspx?id=32983714
    [60]
    CLARK J H, DYER M S, PALGRAVE R G, et al. Visible light photo-oxidation of model pollutants using CaCu3Ti4O12: An experimental and theoretical study of optical properties, electronic structure, and selectivity[J]. Journal of the American Chemical Society, 2011, 133(4): 1016-1032. doi: 10.1021/ja1090832
    [61]
    GOTO Y, SEO J, KUMAMOTO K, et al. Crystal structure, electronic structure, and photocatalytic activity of oxysulfides: La2Ta2ZrS2O8, La2Ta2TiS2O8 and La2Nb2TiS2O8[J]. Inorganic Chemistry, 2016, 55(7): 3674-3679. doi: 10.1021/acs.inorgchem.6b00247
    [62]
    HOU D F, LUO W, HUANG Y H, et al. Synthesis of porous Bi4Ti3O12 nanofibers by electrospinning and their enhanced visible-light-raiven photocatalytic properties[J]. Nanoscale, 2013(5): 2028-2035. http://europepmc.org/abstract/med/23370201
    [63]
    TASKIN A A, LAVROV A N, ANDO Y. Achieving fast oxygen diffusion in perovskite by cation ordering[J]. Applied Physics Letters, 2005, 86: 091910. doi: 10.1063/1.1864244
    [64]
    HAN B Q, LI Y X, CHEN N, et al. Preparation and photocatalytic properties of LnBaCo2O5+δ(Ln=Eu, Gd, and Sm)[J]. Journal of Materials Science and Chemical Engineering, 2015(3): 17-25. http://www.researchgate.net/publication/276169579_Preparation_and_Photocatalytic_Properties_of_LnBaCo2O5d_Ln_Eu_Gd_and_Sm
  • Related Articles

    [1]WANG Shuhong, CHEN Budong, CAO Feifei, WU Qijun, QIAN Chunbo, XU Feixing, LI Zhongping. Preparation of TiO2/CuS composite materials and their performance in photocatalytic degradation of polluted wastewater[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 877-889. DOI: 10.13264/j.cnki.ysjskx.2024.06.011
    [2]LUO Jiangbin, LI Tingting, YOU Weixiong, ZHONG Shengwen. Preparation of Li3/8Sr7/16Ta3/4Hf1/4O3 perovskite solid electrolyte by hot pressing sintering[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 66-69. DOI: 10.13264/j.cnki.ysjskx.2018.04.011
    [3]ZENG Debin, YANG Kai, LI Xiaoxiao, YAO Zhiqiang, LIU Renyue, WU Zhen, TIAN Jian, YU ChangLin. Synthesis and characterization of core-shell like Ag2CO3@AgBr composite photocatalyst and its high visible light photocatalytic performance[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 51-59. DOI: 10.13264/j.cnki.ysjskx.2018.01.009
    [4]TIAN Jian, LIU Zhen, WEI Longfu, YU Changlin. A visible-light-driven core-shell like Ag2S@Ag2CO3 heterojunction photocatalyst with high performance in pollutants degradation[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 23-35. DOI: 10.13264/j.cnki.ysjskx.2017.06.005
    [5]ZHONG Shengwen, HUANG Bing. Effects of excess lithium salt on properties of perovskite-type solid electrolyte Li3/8Sr7/16Ta3/4Hf1/4O3[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 70-74. DOI: 10.13264/j.cnki.ysjskx.2017.01.012
    [6]Bai Yu, Wu Zhen, Liu Ren-yue, Chen Jian-cai, YU Chang-lin. Synthesis, characterization of flower-like Pt/Bi2WO6 microcrystals and their high visible lightphotocatalytic performance[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 60-66. DOI: 10.13264/j.cnki.ysjskx.2016.02.011
    [7]HE Hong-bo, XUE Shuang-shuang, YU Chang-lin. Recent development of W-based semiconductorphotocatalyts[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 32-39. DOI: 10.13264/j.cnki.ysjskx.2015.05.007
    [8]ZHAI Xiangyang, LU Hui, ZHANG Mei, GUO Min. Hydrothermal preparation of visible-light-activated photocatalyst Bi12TiO20 with different morphologies[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 48-52. DOI: 10.13264/j.cnki.ysjskx.2015.01.009
    [9]LIN Shou-guang, XIAO Ling-ling. Application of a fast Susan algorithm to preliminary tungsten processing[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 122-126. DOI: 10.13264/j.cnki.ysjskx.2013.05.005
    [10]LI Xin, YU Chang-lin, FAN Qi-zhe, YANG Kai, CAO Fang-fang. Solvothermal preparation spherical ZnS nano-photocatalyst and its photocatalytic activity[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 21-26. DOI: 10.13264/j.cnki.ysjskx.2012.03.008
  • Cited by

    Periodical cited type(4)

    1. 王玲玲,邵伟,韩飞,邹俊华,陈伟,胡银,章芬,施梓胜. 钙钛矿复合氧化物催化剂研究进展. 硅酸盐学报. 2024(01): 305-321 .
    2. 雷伟,李秉擘,巨荣辉,蒙君煚,陈劭力,罗一鸣. 基于高氯酸根的分子钙钛矿型含能材料研究进展. 火炸药学报. 2023(11): 950-958 .
    3. 张川群,周勤,徐冲,刘新,谭颖,黄微雅. Bi_2MoO_6的形貌调控及其应用研究进展. 有色金属科学与工程. 2021(02): 56-65 . 本站查看
    4. 张琪,郝久源,张敏,李瑞,祖宁宁. Sr_2MoBO_6(B=Os、Re、W)的电子结构与光学性质的第一性原理. 人工晶体学报. 2021(06): 1029-1035 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (283) PDF downloads (53) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return