Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WANG Shuhong, LIU Xin, KONG Bin, LU Jiawei, LI Hong, LIU Liequan, WANG Jinjin, CHEN Juan, HUANG Weiya. Synthesis of CeO2/Bi2MoO6 nanocomposites and their enhanced photocatalytic degradation performance[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 68-76. DOI: 10.13264/j.cnki.ysjskx.2019.02.010
Citation: WANG Shuhong, LIU Xin, KONG Bin, LU Jiawei, LI Hong, LIU Liequan, WANG Jinjin, CHEN Juan, HUANG Weiya. Synthesis of CeO2/Bi2MoO6 nanocomposites and their enhanced photocatalytic degradation performance[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 68-76. DOI: 10.13264/j.cnki.ysjskx.2019.02.010

Synthesis of CeO2/Bi2MoO6 nanocomposites and their enhanced photocatalytic degradation performance

More Information
  • Received Date: November 28, 2018
  • Published Date: April 29, 2019
  • A series of CeO2/Bi2MoO6 nanocomposites were prepared by hydrothermal method. The effect of pH value (2~9) and Ce/Bi molar ratio (3 %~10 %) on the photocatalytic performance of the prepared composites were investigated. The composition, structure and photoelectric properties of the catalyst were characterized by X-ray powder diffraction, scanning electron microscopy, infrared spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, photoluminescence spectroscopy and transient photocurrent-time response spectrum, etc. The results showed that the morphology of Bi2MoO6 (BMO) crystals was needle-like at pH 6, and it became thick after recombination with CeO2. At the same time, the specific surface area reduced and the crystal particles enlarged. Photocatalytic activity of the catalyst was tested by photocatalytic degradation of Rhodamine B (RhB), methylene blue (MB) and phenol, respectively, under simulated sunlight irradiation (a 300 W Xenon lamp). The results showed that the optimal composite containing 5 % CeO2 could achieve the maximum photocatalytic degradation rate. Under the same experimental conditions, reaction rate constants of photocatalytic degradation of RhB, MB and phenol by 5 % CeO2/BMO were 0.037, 0.016 and 0.007 min-1, respectively, which were 3.19, 1.70 and 4.58 times higher than pure BMO, respectively. The enhanced photocatalytic performance was attributed to the formation of heterojunctions between CeO2 and Bi2MoO6, which were beneficial to the efficient separation of photogenerated electrons and holes. This, as a result, increased the content of active free radicals. Free radical trapping experiments showed that superoxide ion radical (O2-)、hydroxyl radical (OH) and holes (h+) all participated in the photocatalytic degradation, and their influence was in the order of O2->OH>h+.
  • [1]
    CARR S A, LIU J, TESORO A G. Transport and fate of microplastic particles in wastewater treatment plants[J]. Water Research, 2016, 91: 174-182. doi: 10.1016/j.watres.2016.01.002
    [2]
    YU C, FAN Q, XIE Y, et al. Sonochemical fabrication of novel square-shaped F doped TiO2 nanocrystals with enhanced performance in photocatalytic degradation of phenol[J]. Journal of Hazardous Materials, 2012, 237/238(6): 38-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8d6b7f4e9cd35acb499761490fc18a69
    [3]
    MAKINEN P M, THENO T J, FERGUSON J F, et al. Chlorophenol toxicity removal and monitoring in aerobic treatment: recovery from process upsets[J]. Environmental Science & Technology, 1993, 27(7): 1434-143. http://cn.bing.com/academic/profile?id=731a5a1f8b2e3c9b178ac819331242cd&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    MA J, ZHANG L Z, WANG Y H, et al. Mechanism of 2, 4-dinitrophenol photocatalytic degradation by ζ-Bi2O3 /Bi2MoO6, composites under solar and visible light irradiation[J]. Chemical Engineering Journal, 2014, 251(251): 371-380. https://www.sciencedirect.com/science/article/pii/S1385894714005178
    [5]
    WANG C, ZHU L, WEI M, et al. Photolytic reaction mechanism and impacts of coexisting substances on photodegradation of bisphenol a by Bi2WO6 in water[J]. Water Research, 2012, 46(3): 845-853. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fce199fd1dc2e0ec04d0d1dc7abb9603
    [6]
    FAZAL T, MUSHTAQ A, REHMAN F, et al. Bioremediation of textile wastewater and successive biodiesel production using microalgae[J]. Renewable & Sustainable Energy Reviews, 2018, 82: 3107-3126. http://cn.bing.com/academic/profile?id=6f6d5ca7031b66b0c6f20b60072cf2d6&encoded=0&v=paper_preview&mkt=zh-cn
    [7]
    NAFIE G, VITALE G, ORTEGA L A C, et al. Nanopyroxene grafting with β-cyclodextrin monomer for wastewater applications[J]. Acs Applied Materials & Interfaces, 2017(9): 42393-42407. http://cn.bing.com/academic/profile?id=8b4147f040cf8c8066fb91f567b5047d&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    CAUSANILLES A, CANTILLNO D R, EMKE E, et al. Comparison of phosphodiesterase type v inhibitors use in eight european cities through analysis of urban wastewater[J]. Environment International, 2018, 115: 279-284. doi: 10.1016/j.envint.2018.03.039
    [9]
    HU W, LIN L, ZHANG R, et al. Highly efficient photocatalytic water splitting over edge-modified phosphorene nanoribbons[J]. Journal of the American Chemical Society, 2017, 139(43): 15429. doi: 10.1021/jacs.7b08474
    [10]
    ZHENG H S, GUO W Q, WU Q L, et al. Electro-peroxone pretreatment for enhanced simulated hospital waste water treatment and antibiotic resistance genes reduction[J]. Environment International, 2018, 115: 70-78. doi: 10.1016/j.envint.2018.02.043
    [11]
    TAGG A S, HARRISON J P, JUNAM Y, et al. Fenton's reagent for the rapid and efficient isolation of microplastics from wastewater[J]. Chemical Communications, 2017, 53(2): 372-375. doi: 10.1039/C6CC08798A
    [12]
    RAZALI M, KIM J F, ATTFIELD M, et al. Sustainable wastewater treatment and recycling in membrane manufacturing[J]. Green Chemistry, 2015, 17(12): 5196-5205. doi: 10.1039/C5GC01937K
    [13]
    NABI S A, NAUSHAD M, INAMUDDIN. synthesis and characterization of a new inorganic cation-exchanger-Zr(Ⅳ) tungstomolybdate: analytical applications for metal content determination in real sample and synthetic mixture[J]. Journal of Hazardous Materials, 2010, 16(1/2/3): 29-38.
    [14]
    INAMUDDIN, MEZBAULALAM M. Studies on the preparation and analytical applications of various metal ion-selective membrane electrodes based on polymeric, inorganic and composite materials—a review[J]. Journal of Macromolecular Science: Part A - Chemistry, 2008, 45(12):1084-1101. doi: 10.1080/10601320802458178
    [15]
    INAMUDDIN, ISMAIL Y A. Synthesis and characterization of electrically conducting poly-o-methoxyaniline Zr(1Ⅴ) molybdate Cd(Ⅱ) selective composite cation-exchanger[J]. Desalination, 2010, 250(2): 523-529. doi: 10.1016/j.desal.2008.06.033
    [16]
    Al-OTHMAN Z A, NAUSHAD M, INAMUDDIN. organic-inorganic type composite cation exchanger poly-o-toluidine Zr(Ⅳ) tungstate: preparation, physicochemical characterization and its analytical application in separation of heavy metals[J]. Chemical Engineering Journal, 2011, 172(1): 369-375. doi: 10.1016/j.cej.2011.06.018
    [17]
    曾德彬, 李笑笑, 姚志强, 等.Ag2CO3@AgBr复合光催化剂的制备、表征及其可见光催化性能[J].有色金属科学与工程, 2018, 9(1): 51-59. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201801009
    [18]
    YU C, BAI Y, HE H, et al. Synthesis, characterization and photocatalytic performance of rod-shaped Pt/PbWO4 composite microcrystals[J]. Chinese Journal of Catalysis, 2015, 36(12): 2178-2185. doi: 10.1016/S1872-2067(15)61009-9
    [19]
    YU C, ZHOU W Q, LIU H, et al. Design and fabrication of microsphere photocatalysts for environmental purification and energy conversion[J]. Chemical Engineering Journal, 2016, 287: 117-129. doi: 10.1016/j.cej.2015.10.112
    [20]
    田坚, 刘珍, 魏龙福, 等.可见光驱动的核壳结构Ag2S@Ag2CO3催化剂及其对污染物的降解性能[J].有色金属科学与工程, 2017, 8(6): 23-35. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017060005
    [21]
    魏龙福, 余长林, 陈建钗, 等.水热法合成Ag2CO3/ZnO异质结复合光催化剂及其光催化性能[J].有色金属科学与工程, 2014, 5(1): 47-53. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201401009
    [22]
    LI J, YU C, FANG W, et al. Preparation, characterization and photocatalytic performance of heterostructured AgCl/Bi2WO6 microspheres[J]. Chinese Journal of Catalysis, 2015, 36(7): 987-993. doi: 10.1016/S1872-2067(15)60849-X
    [23]
    薛霜霜, 何洪波, 吴榛, 等.研磨-焙烧法制备BiOI/BiOBr异质结光催化剂及其光催化性能[J].有色金属科学与工程, 2017, 8(1): 86-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxysjs201701015
    [24]
    YU C, LI G, KUMAR S, et al. Stable Au25(SR)18/TiO2 composite nanostructure with enhanced visible light photocatalytic activity[J]. Journal of Physical Chemistry Letters, 2013, 4(17): 2847-2852. doi: 10.1021/jz401447w
    [25]
    何洪波, 薛霜霜, 余长林.钨基半导体光催化剂研究进展[J].有色金属科学与工程, 2015, 6(5): 32-39. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201505007
    [26]
    JIANG S, WANG L, HAO W, et al. Visible-light photocatalytic activity of S-doped α-Bi2O3[J]. The Journal of Physical Chemistry C, 2015, 119(25): 14094-14101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rgjtxb98201712016
    [27]
    XIA J, DI J, LI H, et al. Ionic liquid-induced strategy for carbon quantum dots/BiOX (X= Br, Cl) hybrid nanosheets with superior visible light-driven photocatalysis[J]. Applied Catalysis B: Environmental, 2016, 181: 260-269. doi: 10.1016/j.apcatb.2015.07.035
    [28]
    NIU M, ZHU R, TIAN F, et al. The effects of precursors and loading of carbon on the photocatalytic activity of C-BiVO4 for the degradation of high concentrations of phenol under visible light irradiation[J]. Catalysis Today, 2015, 258: 585-594. doi: 10.1016/j.cattod.2015.04.005
    [29]
    LIU Y, LV Y, ZHU Y, et al. Fluorine mediated photocatalytic activity of BiPO4[J]. Applied Catalysis B: Environmental, 2014, 147: 851-857. doi: 10.1016/j.apcatb.2013.09.050
    [30]
    QAMAR M, ELSAYED R B, ALHOOSHANI K R, et al. Highly efficient and selective oxidation of aromatic alcohols photocatalyzed by nanoporous hierarchical Pt/Bi2WO6 in organic solvent-free environment[J]. ACS Applied Materials & Interfaces, 2015, 7(2): 1257-1269. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3d5aefb2fef7794e40becacbbcc503a9
    [31]
    WANG D, SHEN H, GUO L, et al. La and F co-doped Bi2MoO6 architectures with enhanced photocatalytic performance via synergistic effect[J]. RSC Advances, 2016, 6(75): 71052-71060. doi: 10.1039/C6RA12898J
    [32]
    LIN H Y, LUAN J, WANG X L, et al. Construction and properties of cobalt(Ⅱ)/copper(Ⅱ) coordination polymers based on N-donor ligands and polycarboxylates mixed ligands[J]. Rsc Advances, 2014, 4(107): 62430-62445. doi: 10.1039/C4RA12367K
    [33]
    SULTANA S, MANSINGH S, PARIDA K M. Facile synthesis of CeO2 nanosheets decorated upon BiOI microplate: a surface oxygen vacancy promoted Z-Scheme-Based 2D-2D nanocomposite photocatalyst with enhanced photocatalytic activity[J]. The Journal of Physical Chemistry C, 2017, 122(1): 808-819. doi: 10.1021/acs.jpcc.7b08534?src=recsys
    [34]
    SARAVANAKUMAR K, KARTHIK R, CHEN S M, et al. Construction of novel Pd/CeO2/g-C3N4 nanocomposites as efficient visible-light photocatalysts for hexavalent chromium detoxification[J]. Journal of Colloid and Interface Science, 2017, 504: 514-526. doi: 10.1016/j.jcis.2017.06.003
    [35]
    ISSARAPANACHEEWIN S, WETCHAKUN K, PHANICHPHANT S, et al. Efficient photocatalytic degradation of Rhodamine B by a novel CeO2/Bi2WO6 composite film[J]. Catalysis Today, 2016, 278: 280-290. doi: 10.1016/j.cattod.2015.12.028
    [36]
    IJAZ S, EHSAN M F, ASHIQ M N, et al. Synthesis of a Bi2S3/CeO2 nanocatalyst and its visible light-driven conversion of CO2 into CH3 OH and CH4[J]. Catalysis Science & Technology, 2015, 5(12): 5208-5215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=697ec5d4ef4a9b5e0c3f4099f577d736
    [37]
    GUO H, GUO Y, LIU L, et al. Designed hierarchical synthesis of ring-shaped Bi2 WO6@CeO2 hybrid nanoparticle aggregates for photocatalytic detoxification of cyanide[J]. Green Chemistry, 2014, 16(5): 2539-2545. doi: 10.1039/C4GC00065J
    [38]
    DAI W, HU X, WANG T, et al. Hierarchical CeO2/Bi2MoO6 heterostructured nanocomposites for photoreduction of CO2 into hydrocarbons under visible light irradiation[J]. Applied Surface Science, 2018, 434: 481-491. doi: 10.1016/j.apsusc.2017.10.207
    [39]
    LI S, HU S, JIANG W, et al. Facile synthesis of cerium oxide nanoparticles decorated flower-like bismuth molybdate for enhanced photocatalytic activity toward organic pollutant degradation[J]. Journal of Colloid & Interface Science, 2018, 530: 171. http://cn.bing.com/academic/profile?id=677fdae9e07d413a44fc3fe995ccc77d&encoded=0&v=paper_preview&mkt=zh-cn
    [40]
    MARTíNE-DE L C A, ALFARO S O, VILLARREAL S M G M. Photocatalytic behavior of α-Bi2Mo3O12 prepared by the pechini method: degradzation of organic dyes under visible-light irradiation[J]. Research on Chemical Intermediates, 2010, 36(8): 925-936. doi: 10.1007/s11164-010-0205-7
    [41]
    SINGH S, LO S L. Single-phase cerium oxide nanospheres: an efficient photocatalyst for the abatement of rhodamine B dye[J]. Environmental Science and Pollution Research, 2018, 25(7): 6532-6544. doi: 10.1007/s11356-017-0902-5
    [42]
    王敏, 杨长秀, 郑浩岩, 等. pH值Bi2MoO6晶体形貌和可见光催化性能的影响[J].无机化学学报, 2015, 31(2): 309-316. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wjhxxb201502014
    [43]
    MATSUURA I, SCHUT R, HIRAKAWA K. The surface structure of the active bismuth molybdate catalyst[J]. Journal of Catalysis, 1980, 63(1): 152-166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3514c3a1142620f87274af1e88b5f55e
    [44]
    NOTERMANN T, KEULKS G W, SKLIAROV A, et al. The physic chemical properties of the bismuth iron molybdate system[J]. Journal of Catalysis, 1975, 39(2): 286-293.
    [45]
    OLIER R, COUDURIER G, EI JAMAL M, et al. Detection and quantitative determination of the composition of bismuth molybdate phases by various spectroscopic techniques[J]. Journal of the Chemical Society, 1989, 85(8): 2615-2624. http://cn.bing.com/academic/profile?id=5bdb2705fbe3caae02c6d3db29064a47&encoded=0&v=paper_preview&mkt=zh-cn
    [46]
    MENG H, LI X X, ZHANG X, et al. Fabrication of nanocomposites composed of silver cyanamide and titania for improved photocatalytic hydrogen generation[J]. Dalton Transactions, 2015, 44(46): 19948-19955. doi: 10.1039/C5DT03869C
    [47]
    KWOLEK P, PIARCZYK K, TOKARSKI T, et al. Lead molybdate- a promising material for optoelectronics and photocatalysis[J]. Journal of Materials Chemistry C, 2015, 3(11): 2614-2623. doi: 10.1039/C4TC02750G
    [48]
    LIU Y, YUAN X, WANG H, et al. Solvothermal synthesis of graphene/BiOCl0.75 Br0.25 microspheres with excellent visible-light photocatalytic activity[J]. RSC Advances, 2015, 5(42): 33696-33704. doi: 10.1039/C5RA02852C
    [49]
    HAO S Y, MA X G, CUI G H. Ultrasonic synthesis of two nanostructured cadmium(Ⅱ) coordination supramolecular polymers: solvent influence, luminescence and photocatalytic properties[J]. Ultrasonics Sonochemistry, 2017, 37: 414-423. doi: 10.1016/j.ultsonch.2017.01.027
    [50]
    CHEN J, DING N W, LI Z F, et al.Organic cathode material for lithium ion battery[J]. Progress in Chemistry, 2015, 27 (9): 1291-1301. http://d.old.wanfangdata.com.cn/Periodical/gfzxb201704008
    [51]
    YU M, ZHU Y A, LU Y, et al. The promoting role of Ag in Ni-CeO2 catalyzed CH4-CO2 dry reforming reaction[J]. Applied Catalysis B: Environmental, 2015, 165: 43-56. doi: 10.1016/j.apcatb.2014.09.066
    [52]
    LI W, LI D, MENG S, et al. Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the ZnxCd1-x S/TiO2 nanocomposites[J]. Environmental Science & Technology, 2011, 45(7): 2987-2993. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM21361322
  • Related Articles

    [1]WANG Shuhong, CHEN Budong, CAO Feifei, WU Qijun, QIAN Chunbo, XU Feixing, LI Zhongping. Preparation of TiO2/CuS composite materials and their performance in photocatalytic degradation of polluted wastewater[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 877-889. DOI: 10.13264/j.cnki.ysjskx.2024.06.011
    [2]MA Mengxia, YAN Xu, YAN Qun, MAO Yanli, KANG Haiyan, YAN Xiaole. Research progress on biochar-based photocatalytic materials for antibiotic degradation[J]. Nonferrous Metals Science and Engineering, 2024, 15(5): 765-773. DOI: 10.13264/j.cnki.ysjskx.2024.05.017
    [3]HUANG Haohui, SUN Haipeng, FAN Qizhe, YU Changlin, JI Hongbing. Research progress in fabrication and application of S-scheme heterojunction photocatalysts[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 68-79. DOI: 10.13264/j.cnki.ysjskx.2022.05.009
    [4]ZHANG Chuanqun, ZHOU Qin, XU Chong, LIU Xin, TAN Ying, HUANG Weiya. Morphology control of Bi2MoO6 and the research progress of its application[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 56-65. DOI: 10.13264/j.cnki.ysjskx.2021.02.008
    [5]WANG Ying, YANG Chuanxi, WANG Xiaoning, ZHU Qing, DONG Wenping, YANG Cheng, LYU Haojie, WANG Weiliang, FAN Yuqi. Research advances on two-dimensional materials using as photocatalysts[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 30-42. DOI: 10.13264/j.cnki.ysjskx.2021.02.005
    [6]DU Ruian, MA Xiaoshuai, ZHANG Mengdi, CHEN Fanyun, YU Changlin. Synthesis of multi-walled carbon nanotubes/TiO2 composites and their photocatalytic performance[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 75-84. DOI: 10.13264/j.cnki.ysjskx.2019.05.012
    [7]TIAN Jian, LIU Zhen, WEI Longfu, YU Changlin. A visible-light-driven core-shell like Ag2S@Ag2CO3 heterojunction photocatalyst with high performance in pollutants degradation[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 23-35. DOI: 10.13264/j.cnki.ysjskx.2017.06.005
    [8]LIU Fuwen, LU Yanqiu, YAN Qun. Degradation of bisphenol A in water by NiO catalytic ozonation[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 103-107. DOI: 10.13264/j.cnki.ysjskx.2017.03.018
    [9]PENG Bing, LIU Qin, CHAI Li-yuan, ZHANG Qiang, YAN Guo-meng. CurreResearch on degradation of methyl orange by using nano-TiO2 photocatalytic cement[J]. Nonferrous Metals Science and Engineering, 2012, 3(6): 1-7. DOI: 10.13264/j.cnki.ysjskx.2012.06.008
    [10]LAN Rong-zong, WANG Jing-song, HAN Yi-hua, WANG Lin-tao, XUE Qing-guo. On the low temperature reduction degradation of sinter in high reduction potential atmosphere[J]. Nonferrous Metals Science and Engineering, 2012, 3(1): 5-9. DOI: 10.13264/j.cnki.ysjskx.2012.01.015
  • Cited by

    Periodical cited type(3)

    1. 邓朋,湛钦淇,文敏,尹艳红. 碳化钨的形貌调控及其载铂电化学性能. 有色金属科学与工程. 2022(05): 29-40 . 本站查看
    2. 吕世杰,罗前程,李江涛. 仲钨酸铵蒸发结晶过程中杂质元素的析出行为. 有色金属科学与工程. 2021(04): 19-26 . 本站查看
    3. 幸康虔,尹艳红,万诗琴,郑换琴,刘鹏飞. 乙二醇辅助聚乙烯醇制备花状氧化铈探索. 有色金属科学与工程. 2019(02): 110-115 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (136) PDF downloads (8) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return