Citation: | WANG Shuhong, LIU Xin, KONG Bin, LU Jiawei, LI Hong, LIU Liequan, WANG Jinjin, CHEN Juan, HUANG Weiya. Synthesis of CeO2/Bi2MoO6 nanocomposites and their enhanced photocatalytic degradation performance[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 68-76. DOI: 10.13264/j.cnki.ysjskx.2019.02.010 |
[1] |
CARR S A, LIU J, TESORO A G. Transport and fate of microplastic particles in wastewater treatment plants[J]. Water Research, 2016, 91: 174-182. doi: 10.1016/j.watres.2016.01.002
|
[2] |
YU C, FAN Q, XIE Y, et al. Sonochemical fabrication of novel square-shaped F doped TiO2 nanocrystals with enhanced performance in photocatalytic degradation of phenol[J]. Journal of Hazardous Materials, 2012, 237/238(6): 38-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8d6b7f4e9cd35acb499761490fc18a69
|
[3] |
MAKINEN P M, THENO T J, FERGUSON J F, et al. Chlorophenol toxicity removal and monitoring in aerobic treatment: recovery from process upsets[J]. Environmental Science & Technology, 1993, 27(7): 1434-143. http://cn.bing.com/academic/profile?id=731a5a1f8b2e3c9b178ac819331242cd&encoded=0&v=paper_preview&mkt=zh-cn
|
[4] |
MA J, ZHANG L Z, WANG Y H, et al. Mechanism of 2, 4-dinitrophenol photocatalytic degradation by ζ-Bi2O3 /Bi2MoO6, composites under solar and visible light irradiation[J]. Chemical Engineering Journal, 2014, 251(251): 371-380. https://www.sciencedirect.com/science/article/pii/S1385894714005178
|
[5] |
WANG C, ZHU L, WEI M, et al. Photolytic reaction mechanism and impacts of coexisting substances on photodegradation of bisphenol a by Bi2WO6 in water[J]. Water Research, 2012, 46(3): 845-853. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fce199fd1dc2e0ec04d0d1dc7abb9603
|
[6] |
FAZAL T, MUSHTAQ A, REHMAN F, et al. Bioremediation of textile wastewater and successive biodiesel production using microalgae[J]. Renewable & Sustainable Energy Reviews, 2018, 82: 3107-3126. http://cn.bing.com/academic/profile?id=6f6d5ca7031b66b0c6f20b60072cf2d6&encoded=0&v=paper_preview&mkt=zh-cn
|
[7] |
NAFIE G, VITALE G, ORTEGA L A C, et al. Nanopyroxene grafting with β-cyclodextrin monomer for wastewater applications[J]. Acs Applied Materials & Interfaces, 2017(9): 42393-42407. http://cn.bing.com/academic/profile?id=8b4147f040cf8c8066fb91f567b5047d&encoded=0&v=paper_preview&mkt=zh-cn
|
[8] |
CAUSANILLES A, CANTILLNO D R, EMKE E, et al. Comparison of phosphodiesterase type v inhibitors use in eight european cities through analysis of urban wastewater[J]. Environment International, 2018, 115: 279-284. doi: 10.1016/j.envint.2018.03.039
|
[9] |
HU W, LIN L, ZHANG R, et al. Highly efficient photocatalytic water splitting over edge-modified phosphorene nanoribbons[J]. Journal of the American Chemical Society, 2017, 139(43): 15429. doi: 10.1021/jacs.7b08474
|
[10] |
ZHENG H S, GUO W Q, WU Q L, et al. Electro-peroxone pretreatment for enhanced simulated hospital waste water treatment and antibiotic resistance genes reduction[J]. Environment International, 2018, 115: 70-78. doi: 10.1016/j.envint.2018.02.043
|
[11] |
TAGG A S, HARRISON J P, JUNAM Y, et al. Fenton's reagent for the rapid and efficient isolation of microplastics from wastewater[J]. Chemical Communications, 2017, 53(2): 372-375. doi: 10.1039/C6CC08798A
|
[12] |
RAZALI M, KIM J F, ATTFIELD M, et al. Sustainable wastewater treatment and recycling in membrane manufacturing[J]. Green Chemistry, 2015, 17(12): 5196-5205. doi: 10.1039/C5GC01937K
|
[13] |
NABI S A, NAUSHAD M, INAMUDDIN. synthesis and characterization of a new inorganic cation-exchanger-Zr(Ⅳ) tungstomolybdate: analytical applications for metal content determination in real sample and synthetic mixture[J]. Journal of Hazardous Materials, 2010, 16(1/2/3): 29-38.
|
[14] |
INAMUDDIN, MEZBAULALAM M. Studies on the preparation and analytical applications of various metal ion-selective membrane electrodes based on polymeric, inorganic and composite materials—a review[J]. Journal of Macromolecular Science: Part A - Chemistry, 2008, 45(12):1084-1101. doi: 10.1080/10601320802458178
|
[15] |
INAMUDDIN, ISMAIL Y A. Synthesis and characterization of electrically conducting poly-o-methoxyaniline Zr(1Ⅴ) molybdate Cd(Ⅱ) selective composite cation-exchanger[J]. Desalination, 2010, 250(2): 523-529. doi: 10.1016/j.desal.2008.06.033
|
[16] |
Al-OTHMAN Z A, NAUSHAD M, INAMUDDIN. organic-inorganic type composite cation exchanger poly-o-toluidine Zr(Ⅳ) tungstate: preparation, physicochemical characterization and its analytical application in separation of heavy metals[J]. Chemical Engineering Journal, 2011, 172(1): 369-375. doi: 10.1016/j.cej.2011.06.018
|
[17] |
曾德彬, 李笑笑, 姚志强, 等.Ag2CO3@AgBr复合光催化剂的制备、表征及其可见光催化性能[J].有色金属科学与工程, 2018, 9(1): 51-59. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201801009
|
[18] |
YU C, BAI Y, HE H, et al. Synthesis, characterization and photocatalytic performance of rod-shaped Pt/PbWO4 composite microcrystals[J]. Chinese Journal of Catalysis, 2015, 36(12): 2178-2185. doi: 10.1016/S1872-2067(15)61009-9
|
[19] |
YU C, ZHOU W Q, LIU H, et al. Design and fabrication of microsphere photocatalysts for environmental purification and energy conversion[J]. Chemical Engineering Journal, 2016, 287: 117-129. doi: 10.1016/j.cej.2015.10.112
|
[20] |
田坚, 刘珍, 魏龙福, 等.可见光驱动的核壳结构Ag2S@Ag2CO3催化剂及其对污染物的降解性能[J].有色金属科学与工程, 2017, 8(6): 23-35. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017060005
|
[21] |
魏龙福, 余长林, 陈建钗, 等.水热法合成Ag2CO3/ZnO异质结复合光催化剂及其光催化性能[J].有色金属科学与工程, 2014, 5(1): 47-53. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201401009
|
[22] |
LI J, YU C, FANG W, et al. Preparation, characterization and photocatalytic performance of heterostructured AgCl/Bi2WO6 microspheres[J]. Chinese Journal of Catalysis, 2015, 36(7): 987-993. doi: 10.1016/S1872-2067(15)60849-X
|
[23] |
薛霜霜, 何洪波, 吴榛, 等.研磨-焙烧法制备BiOI/BiOBr异质结光催化剂及其光催化性能[J].有色金属科学与工程, 2017, 8(1): 86-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxysjs201701015
|
[24] |
YU C, LI G, KUMAR S, et al. Stable Au25(SR)18/TiO2 composite nanostructure with enhanced visible light photocatalytic activity[J]. Journal of Physical Chemistry Letters, 2013, 4(17): 2847-2852. doi: 10.1021/jz401447w
|
[25] |
何洪波, 薛霜霜, 余长林.钨基半导体光催化剂研究进展[J].有色金属科学与工程, 2015, 6(5): 32-39. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201505007
|
[26] |
JIANG S, WANG L, HAO W, et al. Visible-light photocatalytic activity of S-doped α-Bi2O3[J]. The Journal of Physical Chemistry C, 2015, 119(25): 14094-14101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rgjtxb98201712016
|
[27] |
XIA J, DI J, LI H, et al. Ionic liquid-induced strategy for carbon quantum dots/BiOX (X= Br, Cl) hybrid nanosheets with superior visible light-driven photocatalysis[J]. Applied Catalysis B: Environmental, 2016, 181: 260-269. doi: 10.1016/j.apcatb.2015.07.035
|
[28] |
NIU M, ZHU R, TIAN F, et al. The effects of precursors and loading of carbon on the photocatalytic activity of C-BiVO4 for the degradation of high concentrations of phenol under visible light irradiation[J]. Catalysis Today, 2015, 258: 585-594. doi: 10.1016/j.cattod.2015.04.005
|
[29] |
LIU Y, LV Y, ZHU Y, et al. Fluorine mediated photocatalytic activity of BiPO4[J]. Applied Catalysis B: Environmental, 2014, 147: 851-857. doi: 10.1016/j.apcatb.2013.09.050
|
[30] |
QAMAR M, ELSAYED R B, ALHOOSHANI K R, et al. Highly efficient and selective oxidation of aromatic alcohols photocatalyzed by nanoporous hierarchical Pt/Bi2WO6 in organic solvent-free environment[J]. ACS Applied Materials & Interfaces, 2015, 7(2): 1257-1269. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3d5aefb2fef7794e40becacbbcc503a9
|
[31] |
WANG D, SHEN H, GUO L, et al. La and F co-doped Bi2MoO6 architectures with enhanced photocatalytic performance via synergistic effect[J]. RSC Advances, 2016, 6(75): 71052-71060. doi: 10.1039/C6RA12898J
|
[32] |
LIN H Y, LUAN J, WANG X L, et al. Construction and properties of cobalt(Ⅱ)/copper(Ⅱ) coordination polymers based on N-donor ligands and polycarboxylates mixed ligands[J]. Rsc Advances, 2014, 4(107): 62430-62445. doi: 10.1039/C4RA12367K
|
[33] |
SULTANA S, MANSINGH S, PARIDA K M. Facile synthesis of CeO2 nanosheets decorated upon BiOI microplate: a surface oxygen vacancy promoted Z-Scheme-Based 2D-2D nanocomposite photocatalyst with enhanced photocatalytic activity[J]. The Journal of Physical Chemistry C, 2017, 122(1): 808-819. doi: 10.1021/acs.jpcc.7b08534?src=recsys
|
[34] |
SARAVANAKUMAR K, KARTHIK R, CHEN S M, et al. Construction of novel Pd/CeO2/g-C3N4 nanocomposites as efficient visible-light photocatalysts for hexavalent chromium detoxification[J]. Journal of Colloid and Interface Science, 2017, 504: 514-526. doi: 10.1016/j.jcis.2017.06.003
|
[35] |
ISSARAPANACHEEWIN S, WETCHAKUN K, PHANICHPHANT S, et al. Efficient photocatalytic degradation of Rhodamine B by a novel CeO2/Bi2WO6 composite film[J]. Catalysis Today, 2016, 278: 280-290. doi: 10.1016/j.cattod.2015.12.028
|
[36] |
IJAZ S, EHSAN M F, ASHIQ M N, et al. Synthesis of a Bi2S3/CeO2 nanocatalyst and its visible light-driven conversion of CO2 into CH3 OH and CH4[J]. Catalysis Science & Technology, 2015, 5(12): 5208-5215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=697ec5d4ef4a9b5e0c3f4099f577d736
|
[37] |
GUO H, GUO Y, LIU L, et al. Designed hierarchical synthesis of ring-shaped Bi2 WO6@CeO2 hybrid nanoparticle aggregates for photocatalytic detoxification of cyanide[J]. Green Chemistry, 2014, 16(5): 2539-2545. doi: 10.1039/C4GC00065J
|
[38] |
DAI W, HU X, WANG T, et al. Hierarchical CeO2/Bi2MoO6 heterostructured nanocomposites for photoreduction of CO2 into hydrocarbons under visible light irradiation[J]. Applied Surface Science, 2018, 434: 481-491. doi: 10.1016/j.apsusc.2017.10.207
|
[39] |
LI S, HU S, JIANG W, et al. Facile synthesis of cerium oxide nanoparticles decorated flower-like bismuth molybdate for enhanced photocatalytic activity toward organic pollutant degradation[J]. Journal of Colloid & Interface Science, 2018, 530: 171. http://cn.bing.com/academic/profile?id=677fdae9e07d413a44fc3fe995ccc77d&encoded=0&v=paper_preview&mkt=zh-cn
|
[40] |
MARTíNE-DE L C A, ALFARO S O, VILLARREAL S M G M. Photocatalytic behavior of α-Bi2Mo3O12 prepared by the pechini method: degradzation of organic dyes under visible-light irradiation[J]. Research on Chemical Intermediates, 2010, 36(8): 925-936. doi: 10.1007/s11164-010-0205-7
|
[41] |
SINGH S, LO S L. Single-phase cerium oxide nanospheres: an efficient photocatalyst for the abatement of rhodamine B dye[J]. Environmental Science and Pollution Research, 2018, 25(7): 6532-6544. doi: 10.1007/s11356-017-0902-5
|
[42] |
王敏, 杨长秀, 郑浩岩, 等. pH值Bi2MoO6晶体形貌和可见光催化性能的影响[J].无机化学学报, 2015, 31(2): 309-316. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wjhxxb201502014
|
[43] |
MATSUURA I, SCHUT R, HIRAKAWA K. The surface structure of the active bismuth molybdate catalyst[J]. Journal of Catalysis, 1980, 63(1): 152-166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3514c3a1142620f87274af1e88b5f55e
|
[44] |
NOTERMANN T, KEULKS G W, SKLIAROV A, et al. The physic chemical properties of the bismuth iron molybdate system[J]. Journal of Catalysis, 1975, 39(2): 286-293.
|
[45] |
OLIER R, COUDURIER G, EI JAMAL M, et al. Detection and quantitative determination of the composition of bismuth molybdate phases by various spectroscopic techniques[J]. Journal of the Chemical Society, 1989, 85(8): 2615-2624. http://cn.bing.com/academic/profile?id=5bdb2705fbe3caae02c6d3db29064a47&encoded=0&v=paper_preview&mkt=zh-cn
|
[46] |
MENG H, LI X X, ZHANG X, et al. Fabrication of nanocomposites composed of silver cyanamide and titania for improved photocatalytic hydrogen generation[J]. Dalton Transactions, 2015, 44(46): 19948-19955. doi: 10.1039/C5DT03869C
|
[47] |
KWOLEK P, PIARCZYK K, TOKARSKI T, et al. Lead molybdate- a promising material for optoelectronics and photocatalysis[J]. Journal of Materials Chemistry C, 2015, 3(11): 2614-2623. doi: 10.1039/C4TC02750G
|
[48] |
LIU Y, YUAN X, WANG H, et al. Solvothermal synthesis of graphene/BiOCl0.75 Br0.25 microspheres with excellent visible-light photocatalytic activity[J]. RSC Advances, 2015, 5(42): 33696-33704. doi: 10.1039/C5RA02852C
|
[49] |
HAO S Y, MA X G, CUI G H. Ultrasonic synthesis of two nanostructured cadmium(Ⅱ) coordination supramolecular polymers: solvent influence, luminescence and photocatalytic properties[J]. Ultrasonics Sonochemistry, 2017, 37: 414-423. doi: 10.1016/j.ultsonch.2017.01.027
|
[50] |
CHEN J, DING N W, LI Z F, et al.Organic cathode material for lithium ion battery[J]. Progress in Chemistry, 2015, 27 (9): 1291-1301. http://d.old.wanfangdata.com.cn/Periodical/gfzxb201704008
|
[51] |
YU M, ZHU Y A, LU Y, et al. The promoting role of Ag in Ni-CeO2 catalyzed CH4-CO2 dry reforming reaction[J]. Applied Catalysis B: Environmental, 2015, 165: 43-56. doi: 10.1016/j.apcatb.2014.09.066
|
[52] |
LI W, LI D, MENG S, et al. Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the ZnxCd1-x S/TiO2 nanocomposites[J]. Environmental Science & Technology, 2011, 45(7): 2987-2993. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM21361322
|
[1] | WANG Shuhong, CHEN Budong, CAO Feifei, WU Qijun, QIAN Chunbo, XU Feixing, LI Zhongping. Preparation of TiO2/CuS composite materials and their performance in photocatalytic degradation of polluted wastewater[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 877-889. DOI: 10.13264/j.cnki.ysjskx.2024.06.011 |
[2] | MA Mengxia, YAN Xu, YAN Qun, MAO Yanli, KANG Haiyan, YAN Xiaole. Research progress on biochar-based photocatalytic materials for antibiotic degradation[J]. Nonferrous Metals Science and Engineering, 2024, 15(5): 765-773. DOI: 10.13264/j.cnki.ysjskx.2024.05.017 |
[3] | HUANG Haohui, SUN Haipeng, FAN Qizhe, YU Changlin, JI Hongbing. Research progress in fabrication and application of S-scheme heterojunction photocatalysts[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 68-79. DOI: 10.13264/j.cnki.ysjskx.2022.05.009 |
[4] | ZHANG Chuanqun, ZHOU Qin, XU Chong, LIU Xin, TAN Ying, HUANG Weiya. Morphology control of Bi2MoO6 and the research progress of its application[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 56-65. DOI: 10.13264/j.cnki.ysjskx.2021.02.008 |
[5] | WANG Ying, YANG Chuanxi, WANG Xiaoning, ZHU Qing, DONG Wenping, YANG Cheng, LYU Haojie, WANG Weiliang, FAN Yuqi. Research advances on two-dimensional materials using as photocatalysts[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 30-42. DOI: 10.13264/j.cnki.ysjskx.2021.02.005 |
[6] | DU Ruian, MA Xiaoshuai, ZHANG Mengdi, CHEN Fanyun, YU Changlin. Synthesis of multi-walled carbon nanotubes/TiO2 composites and their photocatalytic performance[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 75-84. DOI: 10.13264/j.cnki.ysjskx.2019.05.012 |
[7] | TIAN Jian, LIU Zhen, WEI Longfu, YU Changlin. A visible-light-driven core-shell like Ag2S@Ag2CO3 heterojunction photocatalyst with high performance in pollutants degradation[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 23-35. DOI: 10.13264/j.cnki.ysjskx.2017.06.005 |
[8] | LIU Fuwen, LU Yanqiu, YAN Qun. Degradation of bisphenol A in water by NiO catalytic ozonation[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 103-107. DOI: 10.13264/j.cnki.ysjskx.2017.03.018 |
[9] | PENG Bing, LIU Qin, CHAI Li-yuan, ZHANG Qiang, YAN Guo-meng. CurreResearch on degradation of methyl orange by using nano-TiO2 photocatalytic cement[J]. Nonferrous Metals Science and Engineering, 2012, 3(6): 1-7. DOI: 10.13264/j.cnki.ysjskx.2012.06.008 |
[10] | LAN Rong-zong, WANG Jing-song, HAN Yi-hua, WANG Lin-tao, XUE Qing-guo. On the low temperature reduction degradation of sinter in high reduction potential atmosphere[J]. Nonferrous Metals Science and Engineering, 2012, 3(1): 5-9. DOI: 10.13264/j.cnki.ysjskx.2012.01.015 |
1. |
邓朋,湛钦淇,文敏,尹艳红. 碳化钨的形貌调控及其载铂电化学性能. 有色金属科学与工程. 2022(05): 29-40 .
![]() | |
2. |
吕世杰,罗前程,李江涛. 仲钨酸铵蒸发结晶过程中杂质元素的析出行为. 有色金属科学与工程. 2021(04): 19-26 .
![]() | |
3. |
幸康虔,尹艳红,万诗琴,郑换琴,刘鹏飞. 乙二醇辅助聚乙烯醇制备花状氧化铈探索. 有色金属科学与工程. 2019(02): 110-115 .
![]() |