Citation: | DENG Peng, ZHAN Qinqi, WEN Min, YIN Yanhong. Morphology modulation of tungsten carbide and its electrochemical performance as a Pt cocatalyst[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 29-40. DOI: 10.13264/j.cnki.ysjskx.2022.05.005 |
[1] |
PENG X, NIE X, ZHANG L, et al. Carbon-coated tungsten oxide nanospheres triggering flexible electron transfer for efficient electrocatalytic oxidation of water and glucose[J]. ACS Applied Material Interfaces, 2020, 12 (51): 56943-56953. doi: 10.1021/acsami.0c13547
|
[2] |
ZHANG Z, LU N, YUAN Y, et al. Ultrafine cable-like WC/W2C heterojunction nanowires covered by graphitic carbon towards highly efficient electrocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A, 2018, 6(31): 15395-15403. doi: 10.1039/C8TA05007D
|
[3] |
LING Y, YANG Z, ZHANG Q, et al. A self-template synthesis of defect-rich WS2 as a highly efficient electrocatalyst for the hydrogen evolution reaction[J]. Chemical Communications, 2018, 54: 2631-2634. doi: 10.1039/C7CC08962G
|
[4] |
ZHENG W Q, WANG L, DENG F, et al. Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells[J]. Nat. Commun., 2017, 8(1): 1-8. doi: 10.1038/s41467-016-0009-6
|
[5] |
CRUZ D C, CHRISTOFORO A L, SORDI V L, et al. Inducement of residual stresses in WC-5%Co cutting inserts by plunge-face grinding[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(1): 553-563.
|
[6] |
朱奕松, 尹艳红, 刘开喜, 等. 钨源对碳化钨分散性及电催化性能的影响[J]. 有色金属科学与工程, 2017, 8(4): 73-79. doi: 10.13264/j.cnki.ysjskx.2017.04.013
|
[7] |
LU C, TRANCA D, ZHANG J, et al. Molybdenum carbide-embedded nitrogen-doped porous carbon nanosheets as electrocatalysts for water splitting in alkaline media[J]. ACS Nano 2017, 11(4): 3933-3942. doi: 10.1021/acsnano.7b00365
|
[8] |
HOU J, SUN Y, LI Z, et al. Electrical behavior and electron transfer modulation of nickel-copper nanoalloys confined in nickel-copper nitrides nanowires array encapsulated in nitrogen-doped carbon framework as robust bifunctional electrocatalyst for overall water splitting[J]. Advanced Functional Materials, 2018, 28(37): 1803278.1-183278.8.
|
[9] |
TOGHRAIE D, AGHAHDI M H, SINA N, et al. Application of artificial neural networks for predicting the viscosity of tungsten oxide (WO3)-MWCNTs/engine oil hybrid nanofluid[J]. International Journal of Thermophysics, 2020, 41(12): 1-17.
|
[10] |
尹艳红, 吴子平, 赵曼, 等. 超细氧化钨的制备及其光催化性能研究[J]. 有色金属科学与工程, 2014, 5(3): 50-55. doi: 10.13264/j.cnki.ysjskx.2014.03.009
|
[11] |
LEVY R B, BOUDART M. Platinum-like behavior of tungsten carbide in surface catalysis[J]. Science, 1973, 181(4099): 547-549. doi: 10.1126/science.181.4099.547
|
[12] |
尹艳红, 童珍, 幸康虔, 等. 以锯齿状碳纳米管为模板原位合成微/纳米球状氧化钨[J]. 稀有金属材料与工程, 2019, 48(1): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201901002.htm
|
[13] |
ESPOSTITO D V, HUNT S T, STOTTLEMYER A L, et al. Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates[J]. Angewandte Chemie International Edition, 2010, 49(51): 9859-9862. doi: 10.1002/anie.201004718
|
[14] |
ESPOSTITO D V, CHEN J G, HUNT S T, et al. Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations[J]. Energy & Environmental Science, 2011, 4(10): 3900-3912.
|
[15] |
张娜, 刘蕊, 聂晓荣, 等. 新型纳米碳/碳化钨的制备与应用研究[J]. 化工新型材料, 2020, 48(2): 250-253. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC202002054.htm
|
[16] |
WANG X L, TANG Y J, HANG W, et al. Efficient electrocatalyst for the hydrogen evolution reaction derived from polyoxotungstate/ polypyrrole/graphene[J]. Chem Sus Chem, 2017, 10: 2402-2407. doi: 10.1002/cssc.201700276
|
[17] |
GONG Q, WANG Y, Hu Q, et al. Ultrasmall and phase-pure WC nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution[J]. Nature Communications, 2016, 7: 13216.
|
[18] |
ZENG M, CHEN Y, LI J, et al. 2D WC single crystal embedded in graphene for enhancing hydrogen evolution reaction[J]. Nano Energy, 2017, 33: 356-362.
|
[19] |
REN B W, LI D Q, JIN Q Y, et al. Novel porous tungsten carbide hybrid nanowires on carbon cloth for high-performance hydrogen evolution[J]. Journal of Materials Chemistry A. 2017, 5(25): 13196-13203.
|
[20] |
LIU Z W, HOU X T, XI K, et al. Thickness controllable and mass produced WC@C@Pt hybrid for efficient hydrogen production[J]. Energy Storage Materials, 2018, 10: 268-274.
|
[21] |
HEO S, DAHLMAN C, STALLER C, et al. Enhanced coloration efficiency of electrochromic tungsten oxide nanorods by site selective occupation of sodiumions[J]. Nano Letters, 2020, 20(3): 2072-2079.
|
[22] |
EMIN S, ALTINKALA C, SEMERCI A, et al. Tungsten carbide electrocatalysts prepared from metallic tungsten nanoparticles for efficient hydrogen evolution[J]. Applied Catalysis B Environmental, 2018, 236: 147-153.
|
[23] |
HU Y, YU B, LI W X, et al. W2C nanodot-decorated CNT networks as a highly efficient and stable electrocatalyst for hydrogen evolution in acidic and alkaline media[J]. Nanoscale, 2019, 11(11): 4876-4884.
|
[24] |
CHEN Z, GONG W, CONG S, et al. Eutectoid-structured WC heterostructures: a new platform for long-term alkaline hydrogen evolution reaction at low overpotentials[J]. Nano Energy, 2019, 68: 104-335.
|
[25] |
TONG Z, WEN M, LV C, et al. Ultrathin and coiled carbon nanosheets as Pt carriers for high and stable electrocatalytic performance[J]. Applied Catalysis B: Environmental, 2020, 269: 118764-1-9.
|
[26] |
FAN X, ZHOU H, GUO X. WC nanocrystals grown on vertically aligned carbon nanotubes: an efficient and stable electrocatalyst for hydrogen evolution reaction[J]. ACS Nano, 2015, 9: 5125-5134.
|
[1] | FENG Qiang, LI Jian. Advances in electrocatalytic CO2 reduction with copper-based catalysts[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 364-382. DOI: 10.13264/j.cnki.ysjskx.2024.03.007 |
[2] | DOU Zhongkun, ZHANG Jialiang, CHEN Yongqiang, WANG Chengyan. Separation of molybdenum and nickel from acidic leaching solution of melted alloy of waste hydrogenation catalyst by solvent extraction[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 1-7. DOI: 10.13264/j.cnki.ysjskx.2024.01.001 |
[3] | LIU Li, YANG Tianhui, ZHOU Xi, MENG Ranhao. Effect of hydride on the hydrogen storage performance of Mg2Ni based alloys[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 825-832. DOI: 10.13264/j.cnki.ysjskx.2023.06.010 |
[4] | GUO Ziting, HUANG Jinchao, XIAO Qingmei, ZHONG Shengwen. Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 227-234. DOI: 10.13264/j.cnki.ysjskx.2023.02.009 |
[5] | WANG Buxiang, SHU Qing. Research progress in single-atomic electrocatalytic hydrogen evelution reaction catalyst[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 92-100. DOI: 10.13264/j.cnki.ysjskx.2022.05.011 |
[6] | YU Boyuan, ZHANG Jialiang, YANG Cheng, WANG Lihua, CHEN Yongqiang, WANG Chengyan. Research advances on valuable metals recovery from spent hydrogenation catalyst[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 16-24, 51. DOI: 10.13264/j.cnki.ysjskx.2020.05.003 |
[7] | YE Shewen, PENG Wenkun, PENG Ziyang, OU Ziran, GUO Ziting, ZENG Qinqin, YANG Hui. Nitrogen-doped carbon-supported ultrafine molybdenum carbide hydrogen evolution reaction catalyst[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 33-38. DOI: 10.13264/j.cnki.ysjskx.2020.03.004 |
[8] | DAI Yanni, LIU Gonggang, LI Wen, HAN Kai, ZHOU Yonghua, YE Hongqi. A core-shell structured Al-Si@Al2O3 as novel catalyst support and its catalytic application[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 42-48. DOI: 10.13264/j.cnki.ysjikx.2016.05.008 |
[9] | LU Lixin, WANG Xindong. Preparation and stability of patinum-loaded graphene catalyst[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 40-44. DOI: 10.13264/j.cnki.ysjskx.2015.03.008 |
[10] | YU Chang-lin, ZHANG Cai-xia, CHEN Xi-rong, XIAO You-jun. The Effects of Zr on the Performance of Pt-Sn/γ-Al2O3 Catalyst for Catalytic Dehydrogenation[J]. Nonferrous Metals Science and Engineering, 2010, 1(01): 24-26, 48. |
1. |
赵振刚,牛文辉,姚正银,侯敏杰,解志鹏,张达,梁风. 基于Na-BP-DME@C阳极的长寿命准固态钠-空气电池. 有色金属科学与工程. 2024(02): 204-211 .
![]() | |
2. |
李梦雨,姜淑文,田艳. 碳化钨/碳复合纤维制备及其电解水析氢性能. 大连工业大学学报. 2024(02): 152-156 .
![]() |