Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
DENG Peng, ZHAN Qinqi, WEN Min, YIN Yanhong. Morphology modulation of tungsten carbide and its electrochemical performance as a Pt cocatalyst[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 29-40. DOI: 10.13264/j.cnki.ysjskx.2022.05.005
Citation: DENG Peng, ZHAN Qinqi, WEN Min, YIN Yanhong. Morphology modulation of tungsten carbide and its electrochemical performance as a Pt cocatalyst[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 29-40. DOI: 10.13264/j.cnki.ysjskx.2022.05.005

Morphology modulation of tungsten carbide and its electrochemical performance as a Pt cocatalyst

More Information
  • Received Date: June 07, 2021
  • Revised Date: December 30, 2021
  • Available Online: November 07, 2022
  • In this paper, the hydrothermal template method was applied to regulate the morphology and size of the precursors by adding the surfactant citric acid and the template graphene oxide (GO). The precursor was placed in the air atmosphere for heat treatment to obtain thin, small-sized and dispersed WO3. Then, under a nitrogen protection atmosphere, the ethanol/methanol liquid carbon source was introduced and kept warm at 1 000 ℃ for 2 h to carry out the in-situ reduction carbonization reactions and the tungsten carbide (WC@C) coated with graphified carbon layer was obtained. Different concentrations of Pt NPs in situ at WC@C surface loading yielded a Pt-WC@C compound catalyst. The catalyst Pt-WC@C-1 (10% Pt) has the best performance in an alkaline solution, with an overpotential (η10) of 187 mV and a Taffir slope of 115.7 mV / dec (10% Pt) at the current density of 10 mA/cm2. In acid solution, the Pt-WC@C compound catalyst has a better performance in catalytic properties of hydrogen precipitation. The performance of Pt-WC@C-2 (5% Pt) is better than that of Pt-WC@C-1 (10% Pt) and Pt-WC@C-3 (1% Pt) with an overpotential (η10) of 87.6 mV and the Taffir slope of 51.2 mV/dec, which is mainly due to thinner graphitized carbon layers coated on the surface of well-dispersed WC particles.
  • [1]
    PENG X, NIE X, ZHANG L, et al. Carbon-coated tungsten oxide nanospheres triggering flexible electron transfer for efficient electrocatalytic oxidation of water and glucose[J]. ACS Applied Material Interfaces, 2020, 12 (51): 56943-56953. doi: 10.1021/acsami.0c13547
    [2]
    ZHANG Z, LU N, YUAN Y, et al. Ultrafine cable-like WC/W2C heterojunction nanowires covered by graphitic carbon towards highly efficient electrocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A, 2018, 6(31): 15395-15403. doi: 10.1039/C8TA05007D
    [3]
    LING Y, YANG Z, ZHANG Q, et al. A self-template synthesis of defect-rich WS2 as a highly efficient electrocatalyst for the hydrogen evolution reaction[J]. Chemical Communications, 2018, 54: 2631-2634. doi: 10.1039/C7CC08962G
    [4]
    ZHENG W Q, WANG L, DENG F, et al. Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells[J]. Nat. Commun., 2017, 8(1): 1-8. doi: 10.1038/s41467-016-0009-6
    [5]
    CRUZ D C, CHRISTOFORO A L, SORDI V L, et al. Inducement of residual stresses in WC-5%Co cutting inserts by plunge-face grinding[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(1): 553-563.
    [6]
    朱奕松, 尹艳红, 刘开喜, 等. 钨源对碳化钨分散性及电催化性能的影响[J]. 有色金属科学与工程, 2017, 8(4): 73-79. doi: 10.13264/j.cnki.ysjskx.2017.04.013
    [7]
    LU C, TRANCA D, ZHANG J, et al. Molybdenum carbide-embedded nitrogen-doped porous carbon nanosheets as electrocatalysts for water splitting in alkaline media[J]. ACS Nano 2017, 11(4): 3933-3942. doi: 10.1021/acsnano.7b00365
    [8]
    HOU J, SUN Y, LI Z, et al. Electrical behavior and electron transfer modulation of nickel-copper nanoalloys confined in nickel-copper nitrides nanowires array encapsulated in nitrogen-doped carbon framework as robust bifunctional electrocatalyst for overall water splitting[J]. Advanced Functional Materials, 2018, 28(37): 1803278.1-183278.8.
    [9]
    TOGHRAIE D, AGHAHDI M H, SINA N, et al. Application of artificial neural networks for predicting the viscosity of tungsten oxide (WO3)-MWCNTs/engine oil hybrid nanofluid[J]. International Journal of Thermophysics, 2020, 41(12): 1-17.
    [10]
    尹艳红, 吴子平, 赵曼, 等. 超细氧化钨的制备及其光催化性能研究[J]. 有色金属科学与工程, 2014, 5(3): 50-55. doi: 10.13264/j.cnki.ysjskx.2014.03.009
    [11]
    LEVY R B, BOUDART M. Platinum-like behavior of tungsten carbide in surface catalysis[J]. Science, 1973, 181(4099): 547-549. doi: 10.1126/science.181.4099.547
    [12]
    尹艳红, 童珍, 幸康虔, 等. 以锯齿状碳纳米管为模板原位合成微/纳米球状氧化钨[J]. 稀有金属材料与工程, 2019, 48(1): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201901002.htm
    [13]
    ESPOSTITO D V, HUNT S T, STOTTLEMYER A L, et al. Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates[J]. Angewandte Chemie International Edition, 2010, 49(51): 9859-9862. doi: 10.1002/anie.201004718
    [14]
    ESPOSTITO D V, CHEN J G, HUNT S T, et al. Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations[J]. Energy & Environmental Science, 2011, 4(10): 3900-3912.
    [15]
    张娜, 刘蕊, 聂晓荣, 等. 新型纳米碳/碳化钨的制备与应用研究[J]. 化工新型材料, 2020, 48(2): 250-253. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC202002054.htm
    [16]
    WANG X L, TANG Y J, HANG W, et al. Efficient electrocatalyst for the hydrogen evolution reaction derived from polyoxotungstate/ polypyrrole/graphene[J]. Chem Sus Chem, 2017, 10: 2402-2407. doi: 10.1002/cssc.201700276
    [17]
    GONG Q, WANG Y, Hu Q, et al. Ultrasmall and phase-pure WC nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution[J]. Nature Communications, 2016, 7: 13216.
    [18]
    ZENG M, CHEN Y, LI J, et al. 2D WC single crystal embedded in graphene for enhancing hydrogen evolution reaction[J]. Nano Energy, 2017, 33: 356-362.
    [19]
    REN B W, LI D Q, JIN Q Y, et al. Novel porous tungsten carbide hybrid nanowires on carbon cloth for high-performance hydrogen evolution[J]. Journal of Materials Chemistry A. 2017, 5(25): 13196-13203.
    [20]
    LIU Z W, HOU X T, XI K, et al. Thickness controllable and mass produced WC@C@Pt hybrid for efficient hydrogen production[J]. Energy Storage Materials, 2018, 10: 268-274.
    [21]
    HEO S, DAHLMAN C, STALLER C, et al. Enhanced coloration efficiency of electrochromic tungsten oxide nanorods by site selective occupation of sodiumions[J]. Nano Letters, 2020, 20(3): 2072-2079.
    [22]
    EMIN S, ALTINKALA C, SEMERCI A, et al. Tungsten carbide electrocatalysts prepared from metallic tungsten nanoparticles for efficient hydrogen evolution[J]. Applied Catalysis B Environmental, 2018, 236: 147-153.
    [23]
    HU Y, YU B, LI W X, et al. W2C nanodot-decorated CNT networks as a highly efficient and stable electrocatalyst for hydrogen evolution in acidic and alkaline media[J]. Nanoscale, 2019, 11(11): 4876-4884.
    [24]
    CHEN Z, GONG W, CONG S, et al. Eutectoid-structured WC heterostructures: a new platform for long-term alkaline hydrogen evolution reaction at low overpotentials[J]. Nano Energy, 2019, 68: 104-335.
    [25]
    TONG Z, WEN M, LV C, et al. Ultrathin and coiled carbon nanosheets as Pt carriers for high and stable electrocatalytic performance[J]. Applied Catalysis B: Environmental, 2020, 269: 118764-1-9.
    [26]
    FAN X, ZHOU H, GUO X. WC nanocrystals grown on vertically aligned carbon nanotubes: an efficient and stable electrocatalyst for hydrogen evolution reaction[J]. ACS Nano, 2015, 9: 5125-5134.
  • Related Articles

    [1]FENG Qiang, LI Jian. Advances in electrocatalytic CO2 reduction with copper-based catalysts[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 364-382. DOI: 10.13264/j.cnki.ysjskx.2024.03.007
    [2]DOU Zhongkun, ZHANG Jialiang, CHEN Yongqiang, WANG Chengyan. Separation of molybdenum and nickel from acidic leaching solution of melted alloy of waste hydrogenation catalyst by solvent extraction[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 1-7. DOI: 10.13264/j.cnki.ysjskx.2024.01.001
    [3]LIU Li, YANG Tianhui, ZHOU Xi, MENG Ranhao. Effect of hydride on the hydrogen storage performance of Mg2Ni based alloys[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 825-832. DOI: 10.13264/j.cnki.ysjskx.2023.06.010
    [4]GUO Ziting, HUANG Jinchao, XIAO Qingmei, ZHONG Shengwen. Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 227-234. DOI: 10.13264/j.cnki.ysjskx.2023.02.009
    [5]WANG Buxiang, SHU Qing. Research progress in single-atomic electrocatalytic hydrogen evelution reaction catalyst[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 92-100. DOI: 10.13264/j.cnki.ysjskx.2022.05.011
    [6]YU Boyuan, ZHANG Jialiang, YANG Cheng, WANG Lihua, CHEN Yongqiang, WANG Chengyan. Research advances on valuable metals recovery from spent hydrogenation catalyst[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 16-24, 51. DOI: 10.13264/j.cnki.ysjskx.2020.05.003
    [7]YE Shewen, PENG Wenkun, PENG Ziyang, OU Ziran, GUO Ziting, ZENG Qinqin, YANG Hui. Nitrogen-doped carbon-supported ultrafine molybdenum carbide hydrogen evolution reaction catalyst[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 33-38. DOI: 10.13264/j.cnki.ysjskx.2020.03.004
    [8]DAI Yanni, LIU Gonggang, LI Wen, HAN Kai, ZHOU Yonghua, YE Hongqi. A core-shell structured Al-Si@Al2O3 as novel catalyst support and its catalytic application[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 42-48. DOI: 10.13264/j.cnki.ysjikx.2016.05.008
    [9]LU Lixin, WANG Xindong. Preparation and stability of patinum-loaded graphene catalyst[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 40-44. DOI: 10.13264/j.cnki.ysjskx.2015.03.008
    [10]YU Chang-lin, ZHANG Cai-xia, CHEN Xi-rong, XIAO You-jun. The Effects of Zr on the Performance of Pt-Sn/γ-Al2O3 Catalyst for Catalytic Dehydrogenation[J]. Nonferrous Metals Science and Engineering, 2010, 1(01): 24-26, 48.
  • Cited by

    Periodical cited type(2)

    1. 赵振刚,牛文辉,姚正银,侯敏杰,解志鹏,张达,梁风. 基于Na-BP-DME@C阳极的长寿命准固态钠-空气电池. 有色金属科学与工程. 2024(02): 204-211 . 本站查看
    2. 李梦雨,姜淑文,田艳. 碳化钨/碳复合纤维制备及其电解水析氢性能. 大连工业大学学报. 2024(02): 152-156 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (182) PDF downloads (13) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return