Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
DENG Tongsheng, LI Shang, LU Jiao, LIU Xin, KANG Li. Review on the effects of rare earths on the creep properties of titanium alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 94-98. DOI: 10.13264/j.cnki.ysjskx.2018.06.015
Citation: DENG Tongsheng, LI Shang, LU Jiao, LIU Xin, KANG Li. Review on the effects of rare earths on the creep properties of titanium alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 94-98. DOI: 10.13264/j.cnki.ysjskx.2018.06.015

Review on the effects of rare earths on the creep properties of titanium alloy

More Information
  • Received Date: April 02, 2018
  • Published Date: December 30, 2018
  • Titanium alloy has been widely used in aerospace, ship and petrochemical industry due to its excellent properties of high strength and corrosion resistance. Creep is one of the important indicators to see whether titanium alloy can be used under high temperature condition. Rare earth can be added to improve such performance. First, the paper gives a general introduction on the application of rare earth in titanium alloy and how it affects mechanical properties of titanium alloy. Asides from that, the paper also reviews the outcomes that might happen to the creep properties of titanium alloy due to the change of the contents of Nd, Y, Gd, Er, La and other rare earth elements and their preparation. At the final part, we summary the microscopic mechanism of rare earth elements on the creep performance of titanium alloy. By analyzing influence factors of rare earth Sc on the process of its extraction and distribution of silicide in titanium alloy is proposed. The paper demonstrates the creep-resistant principal and puts forward an instruction on how to enhance alloy's creep performance. Such research findings can be served as the basic theoretical support for the design of titanium alloy materials with better high temperature creep performance.
  • [1]
    C·莱茵斯.钛与钛合金[M].北京:化学工业出版社, 2005.
    [2]
    瓦利金·莫依谢耶夫.钛合金在俄罗斯飞机及航空航天上的应用[M].北京:航空工业出版社, 2008.
    [3]
    程晨, 雷旻, 万明攀, 等. BT25钛合金高温变形行为[J].有色金属科学与工程, 2017, 8(6): 51-56. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017060008
    [4]
    邓雨亭, 李四清, 黄旭.β锻TC17钛合金力学性能各向异性研究[J].稀有金属, 2018, 42(8):885-890. http://d.old.wanfangdata.com.cn/Periodical/xyjs201808015
    [5]
    钦兰云, 李明东, 杨光, 等.热处理对激光沉积TC4钛合金组织与力学性能的影响[J].稀有金属, 2018, 42(7):698-704. http://d.old.wanfangdata.com.cn/Periodical/xyjs201807004
    [6]
    费跃, 王新南, 商国强, 等.冷却速度对TB17合金组织及硬度的影响[J].稀有金属, 2017, 41(9):1056-1060. http://d.old.wanfangdata.com.cn/Periodical/xyjs201709016
    [7]
    邓炬, 杨冠军.稀土元素在钛及钛合金中的作用[J].稀有金属材料与工程, 1993, 22(5): 1-11. http://www.cnki.com.cn/Article/CJFDTotal-COSE199305000.htm
    [8]
    曾国华, 刘安安, 贾宝贵.赣州稀土产业竞争力评价及提升策略[J].有色金属科学与工程, 2015, 6(6): 132-136. http://ysjskx.paperopen.com/oa/darticle.aspx?type=view&id=201506024
    [9]
    曾国华, 吴雯雯.中国南北稀土产业竞争力的比较及差异化发展策略[J].有色金属科学与工程, 2012, 3(4): 75-81. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201204013
    [10]
    胡海祥, 廖作鸿, 郑延智, 等.稀土市场回顾及对我国稀土产业发展的建议[J].有色金属科学与工程, 2016, 7(4): 147-156. http://ysjskx.paperopen.com/oa/darticle.aspx?type=view&id=20160425
    [11]
    郑明贵, 陈艳红.世界稀土资源供需现状与中国产业政策研究[J].有色金属科学与工程, 2012, 3(4): 70-74. http://ysjskx.paperopen.com/oa/darticle.aspx?type=view&id=201204012
    [12]
    蔡茜娜, 汪志刚, 谢飞鸣, 等.钇基稀土对51CrV4弹簧钢冲击韧性的影响[J].有色金属科学与工程, 2018, 9(3): 1-6. http://ysjskx.paperopen.com/oa/darticle.aspx?type=view&id=201804016
    [13]
    李红卫, 蔡茜娜, 刘欣, 等.钇基稀土对51CrV4弹簧钢组织性能的影响[J].有色金属科学与工程, 2017, 8(6): 18-22. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017060004
    [14]
    刘政, 白光珠, 罗浩林. Y对原位Mg2Si/Al基复合材料初生相Mg2Si的细化机制[J].有色金属科学与工程, 2016, 7(1): 28-33. http://ysjskx.paperopen.com/oa/darticle.aspx?type=view&id=201601007
    [15]
    张迎晖, 钟志强, 陈瀚.钇对Al-Cu-Mg-Mn合金组织与性能的影响[J].有色金属科学与工程, 2012, 3(2): 32-36. http://ysjskx.paperopen.com/oa/darticle.aspx?type=view&id=201202008
    [16]
    王斌, 刘咏, 刘延斌, 等.稀土La对粉末冶金钛合金组织和力学性能的影响[J].粉末冶金材料科学与工程, 2011, 16(1): 136-142. doi: 10.3969/j.issn.1673-0224.2011.01.023
    [17]
    陈华, 肖健, 陈杰, 等.稀土强化烧结粉末钛合金的添加形态的探讨[J].材料保护, 2013, 46(增刊1): 89-91. http://d.old.wanfangdata.com.cn/Conference/8103249
    [18]
    李少强, 陈志勇, 王志宏, 等.一种快速凝固粉末冶金高温钛合金微观组织特征研究[J].金属学报, 2013, 49(4): 464-474. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013052100015800
    [19]
    蔡萃丽, 杨赛.稀土金属在钛合金中的应用[J].稀有金属材料与工程, 1984(2): 63-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000068080
    [20]
    曾立英, 赵永庆, 洪权, 等. 600℃高温钛合金的研发[J].钛工业进展, 2012, 29(5): 1-5. http://d.old.wanfangdata.com.cn/Periodical/tgyjz201205001
    [21]
    LI G, LIU Y, LI D, et al. Interaction between dislocations and Nd-rich phase particles in meltquenched Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd alloy[J]. Journal of Materials Science Letters, 1995, 14 (19): 1386-1387. doi: 10.1007/BF00270737
    [22]
    王凡, 白保良, 朱梅生. 550 ℃用高温钛合金的研发[J].钛工业进展, 2014, 31(1): 6-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tgyjz201401004
    [23]
    张振祺, 洪权, 杨冠军, 等. Ti600高温钛合金蠕变前后的组织变化[J].材料工程, 2000, 43(10): 18-21. doi: 10.3969/j.issn.1001-4381.2000.10.005
    [24]
    脱祥明, 周军.钇对IMI829钛合金及Ti-14Al-21Nb合金显微组织和性能的影响[J].中国稀土学报, 1997, 15(2): 34-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700872147
    [25]
    许国栋, 王凤娥.高温钛合金的发展和应用[J].稀有金属, 2008, 32 (6): 774-780. doi: 10.3969/j.issn.0258-7076.2008.06.020
    [26]
    程晓英, 许嘉龙, 王世洪.高温钛台金中微量元素的作用机理[J].上海钢研, 1994, 21(1): 28-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400407874
    [27]
    邓炬, 吴之乐, 杨冠军, 等.一种稀土改性的先进高温钛合金[J].航空材料学报, 1990, 10(1): 1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001381496
    [28]
    郑月秋, 黄汉良, 段文森, 等.钆和氧对高温钛合金显微组织的影响[J].稀有金属材料与工程, 1990, 19(6): 40-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000068932
    [29]
    黄汉良, 段文森, 郑月秋, 等.稀土元素Gd和不同氧含量配合对Ti829高温合金组织性能的影响[J].稀有金属材料与工程, 1990, 19 (1): 2-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000068814
    [30]
    韩鹏, 李伯龙, 尹嘉明, 等. Er对一种近α型高温钛合金蠕变性能的影响[J].科学技术与工程, 2012, 12(17): 4124-4127. doi: 10.3969/j.issn.1671-1815.2012.17.016
    [31]
    郜广军. Si、Mo、Y对Ti55合金组织及性能的影响[D].哈尔滨: 哈尔滨工业大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10213-1016914610.htm
    [32]
    郭宏岩.稀土Y对铸造Ti-6Al-3Sn-3Zr-0.5Mo-0.35Si高温合金组织性能的影响[D].哈尔滨: 哈尔滨工业大学, 2008. http://cdmd.cnki.com.cn/article/cdmd-10213-2009290156.htm
    [33]
    张长江. Y含量对Ti-6Al-2.5Sn-4Zr-0.7Mo-0.3Si钛合金组织性能的影响[D].哈尔滨: 哈尔滨工业大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10213-2010027296.htm
    [34]
    YANG Y, LUO S, SCHAFFER G, et al. Impurity scavenging, microstructural refinement and mechanical properties of powder metallurgy titanium and titanium alloys by a small addition of cerium silicide[J]. Materials Science and Engineering: A, 2013, 573(3): 166-174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=afb00100d1b9ed675cb4e0a284187f46
    [35]
    LI S, CHEN Z, WANG Z, et al. Microstructure study of a rapid solidification powder metallurgy high temperature titanium alloy[J]. Acta Metall Sin, 2013, 29(4): 464-474.
    [36]
    戚延龄. TC11钛合金的热稳定性及高温蠕变行为的研究[D].长沙: 中南大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10533-1014143997.htm
    [37]
    尹志民, 潘清林, 姜锋, 等.钪和含钪合金[M].长沙:中南大学出版社, 2007.
    [38]
    LIM Y, YEO W. The effects of scandium on A356 aluminium alloy in gravity die casting[J]. Materials Research Innovations, 2014, 18(增刊1): 395-399. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c240096e74a07b97b808eaa197a8d17f
    [39]
    周民, 邓鸿华, 甘培源, 等.含钪铝合金研究进展[J].世界有色金属, 2016, 10(21): 95-97. http://d.old.wanfangdata.com.cn/Periodical/shjs200301009
    [40]
    刘会群.金属Sc对钛合金组织与性能的影响[D].长沙: 中南大学, 2004. http://cdmd.cnki.com.cn/article/cdmd-10533-2004114331.htm
    [41]
    刘会群.含钪钛合金的制备及其相关基础问题研究[D].长沙: 中南大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10533-2009208192.htm
    [42]
    XIAO W, PING D, MURAKAMI H, et al. Microstructure and oxidation behavior of Ti-6Al-2Zr-1Mo-1V-based alloys with Sc addition[J]. Materials Science and Engineering: A, 2013, 580 (10): 266-272. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b0dd14be73b8bab73c738276d208811
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]MAO Pengyan, ZHAO Hui, LI Hongda. Effect of Al content on microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 867-876. DOI: 10.13264/j.cnki.ysjskx.2024.06.010
    [3]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [4]DAI Kun, WANG Zhigang, YE Jieyun, CHEN Jiqiang, HE Changwei a, XIONG Kezhi a. Effects of electromagnetic stirring on the primary/eutectic phase and mechanical properties of Al-14Ce alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 716-727. DOI: 10.13264/j.cnki.ysjskx.2023.05.015
    [5]WANG Jihang, CAI Yusheng, JIANG Muchi, REN Dechun, JI Haibin, LEI Jiafeng, XIAO Xuan. Influence of artificial implant defects on properties of TC4 Titanium alloy fabricated by additive manufacturing[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 668-675. DOI: 10.13264/j.cnki.ysjskx.2023.05.009
    [6]QI Zhaoming, XU Huaben, LE Shuncong, HUANG Hui, GUO Chengjun, XIAO Xiangpeng, YANG Bin. Effect of rare earth lanthanum on microstructure and properties of Cu-15Ni-8Sn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 569-579. DOI: 10.13264/j.cnki.ysjskx.2023.04.016
    [7]ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012
    [8]XIE Fanghao, LI Jianan, DENG Shenghua, LI Weirong. The microstructure and mechanical properties of selective laser melted Al-Zn-Mg-Sc alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 61-69. DOI: 10.13264/j.cnki.ysjskx.2022.04.008
    [9]QUAN Yongqi, CHENG Hanming, WANG Herui, ZHAO Yao, LIN Gaoyong. Effects of heat treatment on the microstructure and mechanical properties of die casting AlSi10MnMg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 98-106. DOI: 10.13264/j.cnki.ysjskx.2022.02.014
    [10]XIAO Zongliang, WANG Bingqi, XU Yusong, ZHOU Jiaxi, CUI Lijiang, YOU Weixiong. Synthesis of Yb3+ and Er+ doped Y2Ti2O7 phosphor and up-conversion luminescence mechanism[J]. Nonferrous Metals Science and Engineering, 2019, 10(6): 87-91. DOI: 10.13264/j.cnki.ysjskx.2019.06.014

Catalog

    Article Metrics

    Article views (109) PDF downloads (7) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return