Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
SUN Junwei, ZHANG Rongwei, LI Shengyan, ZHOU Jun, ZHAO Hongjin. Research on the thermal denaturation of 5182 aluminium alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 43-48. DOI: 10.13264/j.cnki.ysjskx.2018.05.008
Citation: SUN Junwei, ZHANG Rongwei, LI Shengyan, ZHOU Jun, ZHAO Hongjin. Research on the thermal denaturation of 5182 aluminium alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 43-48. DOI: 10.13264/j.cnki.ysjskx.2018.05.008

Research on the thermal denaturation of 5182 aluminium alloy

More Information
  • Received Date: April 29, 2018
  • Published Date: October 30, 2018
  • The MMS-100 thermal simulation tester was utilized to perform a single pass compression test on 5182 aluminium alloy, and its thermal denaturation behavior was studied to construct a model of flow stress and the processing map. The results showed that the flow stress of 5182 aluminium alloy gradually decreased with the increase in temperature and the decrease in strain rate. Moreover, high temperature would promote the occurrence of dynamic recrystallization, and the effect of strain rate could be ignored. The true stress-true strain curve of the alloy produced jagged undulations at high strain rates; there would be a high-power dissipation factor area when the true strain ε=0.4 at 420 ℃ to 500 ℃, and the strain rate to 0.1 s-1. In addition, the alloy had a larger safe machining area when the temperature was near 450 ℃.
  • [1]
    陈辉, 景财年.热成形技术在汽车轻量化中的应用与发展[J].金属热处理, 2016(3):61-66. doi: 10.3969/j.issn.1673-4971.2016.03.015
    [2]
    陈婕尔, 王孟君, 杨刚, 等.汽车用5182铝合金板温冲压实验研究及数值模拟[J].中国有色金属学报, 2012(12):3342-3347. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201212008
    [3]
    郭玉琴, 朱新峰, 杨艳, 等.汽车轻量化材料及制造工艺研究现状[J].锻压技术, 2015(3):1-6. http://d.old.wanfangdata.com.cn/Periodical/qcyjswx-wxb201707043
    [4]
    郑晖, 赵曦雅.汽车轻量化及铝合金在现代汽车生产中的应用[J].锻压技术, 2016(2):1-6. http://d.old.wanfangdata.com.cn/Periodical/dyjs201602001
    [5]
    武万斌, 年雪山.汽车轻量化技术发展趋势[J].汽车工程师, 2017(1):15-17. doi: 10.3969/j.issn.1674-6546.2017.01.002
    [6]
    徐建全, 杨沿平, 唐杰, 等.纯电动汽车与燃油汽车轻量化效果的对比分析[J].汽车工程, 2012(6):540-543. doi: 10.3969/j.issn.1000-680X.2012.06.013
    [7]
    徐盛华.铝产业链生态化低碳经济发展模式研究[J].有色金属科学与工程, 2012, 3(3):85-89. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201203019
    [8]
    钟奇, 施毅, 刘博.铝合金在汽车轻量化中的应用[J].新材料产业, 2015(2):23-27. doi: 10.3969/j.issn.1008-892X.2015.02.007
    [9]
    唐见茂.新能源汽车轻量化材料[J].新型工业化, 2016(1):1-14. doi: 10.3969/j.issn.2095-6649.2016.01.001
    [10]
    王井井, 黄元春, 刘宇, 等.时效工艺对Al-Zn-Mg-Cu-Zr-Er铝合金组织与耐腐蚀性影响[J].有色金属科学与工程, 2018, 9(2):47-55. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201711022
    [11]
    陈辛波, 杭鹏, 王叶枫.电动汽车轻量化技术研究现状与发展趋势[J].汽车工程师, 2015(11):23-28. doi: 10.3969/j.issn.1674-6546.2015.11.003
    [12]
    郑晖, 赵曦雅.汽车轻量化及铝合金在现代汽车生产中的应用[J].锻压技术, 2016(2):1-6. http://d.old.wanfangdata.com.cn/Periodical/dyjs201602001
    [13]
    陈明彪.铝合金轧制与多向限制变形微结构和织构研究[D].秦皇岛: 燕山大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10216-1014033773.htm
    [14]
    李敬. Al-Mg合金再结晶织构与制耳行为的研究[D].秦皇岛: 燕山大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10216-1012026014.htm
    [15]
    王孟君, 周威, 任杰, 等.汽车用5182铝合金的温拉深成形性能[J].中南大学学报(自然科学版), 2010(3):936-939. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201003021
    [16]
    王宇, 曹零勇, 李俊鹏, 等.中间退火对汽车用5182铝合金板组织和性能的影响[J].材料工程, 2016(9):76-81. http://d.old.wanfangdata.com.cn/Periodical/clgc201609012
    [17]
    刘一峥, 杨翠颜, 刘智杰. Al-Si合金组织遗传性对6463铝合金含硅相的影响[J].有色金属科学与工程, 2013, 4(4):81-84. http://ysjskx.paperopen.com/oa/darticle.aspx?type=view&id=201304009
    [18]
    宋高阳, 宋波, 杨玉厚, 等.利用超重力分离5052铝合金熔体中的非金属夹杂[J].有色金属科学与工程, 2015, 6(1):29-34. http://ysjskx.paperopen.com/oa/darticle.aspx?type=view&id=201501006
    [19]
    徐芬, 王晶莉, 张宗鹏, 等.预应变与预时效对6101导电铝合金组织与性能的影响[J].有色金属科学与工程, 2016, 7(1):34-40. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201601008
    [20]
    金滨辉.汽车车身用5182铝合金板组织与性能研究[D].北京: 北京有色金属研究总院, 2013. http://cdmd.cnki.com.cn/Article/CDMD-86403-1013227929.htm
    [21]
    QU F, ZHOU J, LIU X, et al. Constitutive equation and processing map of thermal deformation for TC18 titanium alloy[J]. Rare Metal Materials & Engineering, 2014, 43(1):120-124. http://en.cnki.com.cn/Article_en/CJFDTotal-COSE201401023.htm
    [22]
    WANG X Y, LI X F, JIANG F L, et al. Hot compression flow stress behavior and thermal processing map of a new Al-Mn alloy[J]. Materials for Mechanical Engineering, 2014. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXGC201411021.htm
    [23]
    WANG Z, WANG Z, YI X, et al. Thermal compressive flow constitutive equation and hot processing map of ZE42 magnesium alloy[J]. Special Casting & Nonferrous Alloys, 2017. http://d.old.wanfangdata.com.cn/Periodical/tzzzjyshj201704021
    [24]
    CAI J, WANG K, WEN W. Characterization of high-temperature deformation behavior of BFe10-1-2 cupronickel alloy using constitutive equation and processing map[J]. Rare Metal Materials & Engineering, 2016, 45(10):2549-2554. http://www.en.cnki.com.cn/Article_en/CJFDTotal-COSE201610015.htm
    [25]
    LIU N, ZHOU L I, LING L I, et al. Processing map and hot deformation mechanism of novel nickel-free white copper alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(11):3492-3499. doi: 10.1016/S1003-6326(14)63493-2
    [26]
    WANG M, JIN P, WANG J. Hot deformation and processing maps of 7005 aluminum alloy[J]. High Temperature Materials & Processes, 2014, 33(4):369-375. http://cn.bing.com/academic/profile?id=1ecec2a5c0919eb4ddd1243bb9b5672f&encoded=0&v=paper_preview&mkt=zh-cn
  • Related Articles

    [1]ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012
    [2]FANG Yi, ZHAO Wenning, HAN Xiuxun. Effects of thickness of absorption layer and buffer layer on the performance of Cu3BiS3 solar cell[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 50-55. DOI: 10.13264/j.cnki.ysjskx.2021.02.007
    [3]Li Xueshuai, Guo Lili, Zhang Jianbo, Wang Haibin, Zheng Dianshui. Anisotropy and texture correlation analysis of deep-drawing copper strip[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 44-48. DOI: 10.13264/j.cnki.ysjskx.2020.04.007
    [4]XIE Weicheng, TAO Li, ZHONG Minglong, LIU Renhui, NI Gang, HU Xianjun, ZHONG Zhenchen. Structure and magnetic properties of TbCu7-type SmCo7-xHfx alloys[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 101-105. DOI: 10.13264/j.cnki.ysjskx.2019.05.016
    [5]ZHONG Zhenchen, ZENG Qingwen, JIANG Qingzheng, SAJJAD Ur Rehman, LEI Weikai, HE Lunke. Effect of Y substitution on the microstructure and magnetic properties of Pr-Nd-Fe-B alloy[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 99-103. DOI: 10.13264/j.cnki.ysjskx.2019.03.017
    [6]HUANG Xiangyun, HE Lei, ZENG Liangliang, DU Chang, QU Pengpeng, ZHOU Toujun, YU Xiaoqiang, ZHONG Zhenchen, LI Jiajie. Effect of grain boundary diffusion Dy60Co35Ga5 alloys on magnetic properties and thermal stability of sintered NdFeB magnets[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 104-109. DOI: 10.13264/j.cnki.ysjskx.2019.02.015
    [7]HE Lunke, QUAN Qichen, HU Xianjun, JIANG Qingzheng, Rehman Sajjad Ur, ZHONG Minglong, LI Yesheng. Effect of Nb doping on the magnetic properties and exchange coupling ofNd-Ce-Fe-B alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 103-108. DOI: 10.13264/j.cnki.ysjskx.2018.05.017
    [8]LI Man, XUE Qingguo, She Xuefeng, WANG Guang, Liu Yingli, WANG Jingsong. An experimental study on gasification of different optical texture of coke by alkali metal (K)[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 9-14. DOI: 10.13264/j.cnki.ysjskx.2018.01.002
    [9]PENG Guanghuai, DU Xilong, GUO Huabin, QIU Shitao. Effect of sintering temperature on microstructure and properties of Nd24.38Ce0.52Gd6.65Febal.TM1.76B0.95 magnet[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 135-139. DOI: 10.13264/j.cnki.ysjskx.2016.02.024
    [10]CHAI Manlin. Magnetic materials preparation out of acid leaching slag by copper flash smelting technology[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 56-60. DOI: 10.13264/j.cnki.ysjskx.2015.03.011
  • Cited by

    Periodical cited type(2)

    1. 姜立春,陈鹏. 基于充填体拱效应的水平矿柱安全厚度研究. 金属矿山. 2018(06): 46-50 .
    2. 陈伟,付玉华,许宏伟. 基于Midas/Gts建模的FLAC~(3D)双旗山采空区稳定性分析. 化工矿物与加工. 2017(10): 30-34 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (71) PDF downloads (1) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return