Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
CHAI Manlin. Magnetic materials preparation out of acid leaching slag by copper flash smelting technology[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 56-60. DOI: 10.13264/j.cnki.ysjskx.2015.03.011
Citation: CHAI Manlin. Magnetic materials preparation out of acid leaching slag by copper flash smelting technology[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 56-60. DOI: 10.13264/j.cnki.ysjskx.2015.03.011

Magnetic materials preparation out of acid leaching slag by copper flash smelting technology

More Information
  • Received Date: March 04, 2015
  • Published Date: June 29, 2015
  • Acid leaching slag of copper flash smelting dust preparation from magnetic materials was studied for the comprehensive use of copper flash smelting dust. Acid leaching slag of flash smelting dust was processed in different concentrations of hydrochloric acid and lead removal by analyzing the magnetic properties of different processes. The results show that saturation magnetization and remanence increases and coercivity decreases with removed impurities. The optimal acid leaching property occurs when the concentration of hydrochloric acid is 3 mol/L, the saturation magnetization and remanence are 10.965 A·m2/kg and 0.96374 A·m2/kg, and coercivity 3.33×103 A/m, respectively; acid leaching slag of lead removal, the saturation magnetization, remanence and coercivity are 11.065 A·m2/kg, 0.94 A·m2/kg and 3.228×103 A/m, respectively.
  • [1]
    刘建军.铜闪速熔炼工艺[J].铜业工程, 2011(3):25-28. http://www.cnki.com.cn/Article/CJFDTOTAL-TYGC201103009.htm
    [2]
    周松林.闪速熔炼-清洁高效的炼铜工艺[J].中国工程科学, 2001, 10(3):86-89. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200110015.htm
    [3]
    Muhammad J I, Nadia Y, Bogdan S, etal. A study of the influence of crystallite size on the electrical and magnetic properties of CuFe2O4[J].Materials Research Bulletin, 2011, 46:1837-1842. doi: 10.1016/j.materresbull.2011.07.036
    [4]
    Singh S, Yadav B C, Gupta V D, et al. Investigation on effects of surface morphologies on response of LPG sensor based on nanostructured copper ferrite system[J]. Materials Research Bulletin, 2012, 47:3538-3547. doi: 10.1016/j.materresbull.2012.06.064
    [5]
    Bomio M, Lavela P, Tirado J L. Electrochemical evaluation of CuFe2O4 samples obtained by sol-gel methods used as anodes in lithium batteries[J]. Journal of Solid State Electrochem, 2008(12):729-737.
    [6]
    Ding Y, Yang Y, Shao H.Synthesis and characterization of nanostructured CuFe2O4 anode material for lithium ion battery[J]. Solid State Ionics, 2012, 217:27-33. doi: 10.1016/j.ssi.2012.04.021
    [7]
    Selvan R K, Augustin C O, Berchmans L J, et al. Combustion synthesis of CuFe2O4[J]. Materials Research Bulletin, 2003, 38:41-54. doi: 10.1016/S0025-5408(02)01004-8
    [8]
    Jiao H, Jiao G S, Wang J L. Preparation and magnetic properties of CuFe2O4 nanoparticles[J]. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2013, 43(2):131-134. doi: 10.1080/15533174.2012.680090
    [9]
    Roberto K, Till W, Dietrich H, et al. Crystallite-growth, phasetransition, magneticproperties, and sintering behaviour of nano-CuFe2O4 powder sprepared by a combustion-like process[J]. Journal of Solid State Chemistry, 2014, 213:57-64. doi: 10.1016/j.jssc.2014.02.010
    [10]
    郑雅杰, 洪波.漂浮阳极泥富集金银及回收锑铋工艺[J].中南大学学报(自然科学版), 2011, 42(8):2221-2226. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201108011.htm
    [11]
    唐谟堂, 杨声海, 唐朝波, 等.AC法处理高锑低银类铅阳极泥-铜和铋的回收[J].中南大学学报(自然科学版), 2003, 34(5):499-501. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200305008.htm
    [12]
    王英, 陈少纯.锑火法精炼除铅的研究[J].广东有色金属学报, 2004, 14(2):111-113. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYS200402008.htm
    [13]
    王俊娥.铜阳极泥综合回收技术研究[J].矿产保护与利用, 2013, 10(5):39-43. http://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201305010.htm
    [14]
    Selvan R K, Augustin C O, Sanjeeviraja C, et al. Effect of SnO2 coating on the magnetic properties of nanocrystalline CuFe2O4[J]. Solid State Communications, 2006(137): 512-516.
    [15]
    孙艳.纳米永磁材料的微结构与有效各向异性及矫顽力[D].济南:山东大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10422-2008189964.htm
    [16]
    Zhang X Y, Guan Y, Zhang J W.Study of interface structure of Nd2Fe14B nanocomposite magnets[J].Applied Physics Letters, 2002, 80:1966. doi: 10.1063/1.1456950
    [17]
    Raviprasad K, Ravishankar N, Chattopadhyay K, et al. Magnetic hardening mechanism in nanocrystalline Nd2Fe14B with 0.1% Addition of Cr, Cu, Zr[J].Journal of Applied Physics, 1998, 83(2):916. doi: 10.1063/1.366778
  • Related Articles

    [1]DOU Zhongkun, ZHANG Jialiang, CHEN Yongqiang, WANG Chengyan. Separation of molybdenum and nickel from acidic leaching solution of melted alloy of waste hydrogenation catalyst by solvent extraction[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 1-7. DOI: 10.13264/j.cnki.ysjskx.2024.01.001
    [2]ZHANG Hepeng, CHEN Jinqing. Research progress of hydrophobic eutectic solvent extraction of metal ions[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 9-18. DOI: 10.13264/j.cnki.ysjskx.2021.04.002
    [3]WU Jianhui, DONG Bo, ZHANG Xianpeng, YE Fengchun, WANG Hongjun, JI Hongwei, GUO Fangying, QIU Shiwei, LIU Zhidong. Solvent extraction of Cu, Zn, Co from nickel sulphate solution applying P507[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 19-24. DOI: 10.13264/j.cnki.ysjskx.2018.02.004
    [4]Zhang Ying, Zhang Ting-an. Research progress for vanadium extraction from vanadium leach solution by solvent extraction[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 14-20. DOI: 10.13264/j.cnki.ysjskx.2017.05.002
    [5]HUANG Xilin, LI Liangxing, HUANG Jindi, LIAO Chunfa, TONG Changren. Extraction performance of bismuth with N235 under Cl-assisted extraction[J]. Nonferrous Metals Science and Engineering, 2017, 8(2): 19-23. DOI: 10.13264/j.cnki.ysjskx.2017.02.004
    [6]DING Yangli, XIAO Liansheng, CAO Zuoying, ZHANG Guiqing, ZENG Li. Separation of vanadium from sodium molybdate solution by N263[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 15-20. DOI: 10.13264/j.cnki.ysjskx.2017.01.003
    [7]WANG Fang, Zhao Hongxing, XIAO Yanfei, XU Zhifeng. Solvent extraction of thioarsenite by CO32--type tOMAC in alkaline solutions[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 14-18.
    [8]CHEN Jing-qing, LIN Kai, XIONG Jia-ren, DUAN Min, HUANG Ya-xiang. Extraction of vanadium from high alkaline solution by modified quaternary ammonium salt[J]. Nonferrous Metals Science and Engineering, 2015, 6(2): 21-26. DOI: 10.13264/j.cnki.ysjskx.2015.02.004
    [9]LI Bo. Research advances of molybdenum solvent extraction in acidic system[J]. Nonferrous Metals Science and Engineering, 2013, 4(6): 33-36. DOI: 10.13264/j.cnki.ysjskx.2013.06.021
    [10]ZHANG Zi-yan. The Research and Development of Solvent Extraction in Tungsten Smelting[J]. Nonferrous Metals Science and Engineering, 2005, 19(3): 22-27, 46.

Catalog

    Article Metrics

    Article views (56) PDF downloads (3) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return