Citation: | CHAI Manlin. Magnetic materials preparation out of acid leaching slag by copper flash smelting technology[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 56-60. DOI: 10.13264/j.cnki.ysjskx.2015.03.011 |
[1] |
刘建军.铜闪速熔炼工艺[J].铜业工程, 2011(3):25-28. http://www.cnki.com.cn/Article/CJFDTOTAL-TYGC201103009.htm
|
[2] |
周松林.闪速熔炼-清洁高效的炼铜工艺[J].中国工程科学, 2001, 10(3):86-89. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200110015.htm
|
[3] |
Muhammad J I, Nadia Y, Bogdan S, etal. A study of the influence of crystallite size on the electrical and magnetic properties of CuFe2O4[J].Materials Research Bulletin, 2011, 46:1837-1842. doi: 10.1016/j.materresbull.2011.07.036
|
[4] |
Singh S, Yadav B C, Gupta V D, et al. Investigation on effects of surface morphologies on response of LPG sensor based on nanostructured copper ferrite system[J]. Materials Research Bulletin, 2012, 47:3538-3547. doi: 10.1016/j.materresbull.2012.06.064
|
[5] |
Bomio M, Lavela P, Tirado J L. Electrochemical evaluation of CuFe2O4 samples obtained by sol-gel methods used as anodes in lithium batteries[J]. Journal of Solid State Electrochem, 2008(12):729-737.
|
[6] |
Ding Y, Yang Y, Shao H.Synthesis and characterization of nanostructured CuFe2O4 anode material for lithium ion battery[J]. Solid State Ionics, 2012, 217:27-33. doi: 10.1016/j.ssi.2012.04.021
|
[7] |
Selvan R K, Augustin C O, Berchmans L J, et al. Combustion synthesis of CuFe2O4[J]. Materials Research Bulletin, 2003, 38:41-54. doi: 10.1016/S0025-5408(02)01004-8
|
[8] |
Jiao H, Jiao G S, Wang J L. Preparation and magnetic properties of CuFe2O4 nanoparticles[J]. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2013, 43(2):131-134. doi: 10.1080/15533174.2012.680090
|
[9] |
Roberto K, Till W, Dietrich H, et al. Crystallite-growth, phasetransition, magneticproperties, and sintering behaviour of nano-CuFe2O4 powder sprepared by a combustion-like process[J]. Journal of Solid State Chemistry, 2014, 213:57-64. doi: 10.1016/j.jssc.2014.02.010
|
[10] |
郑雅杰, 洪波.漂浮阳极泥富集金银及回收锑铋工艺[J].中南大学学报(自然科学版), 2011, 42(8):2221-2226. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201108011.htm
|
[11] |
唐谟堂, 杨声海, 唐朝波, 等.AC法处理高锑低银类铅阳极泥-铜和铋的回收[J].中南大学学报(自然科学版), 2003, 34(5):499-501. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200305008.htm
|
[12] |
王英, 陈少纯.锑火法精炼除铅的研究[J].广东有色金属学报, 2004, 14(2):111-113. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYS200402008.htm
|
[13] |
王俊娥.铜阳极泥综合回收技术研究[J].矿产保护与利用, 2013, 10(5):39-43. http://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201305010.htm
|
[14] |
Selvan R K, Augustin C O, Sanjeeviraja C, et al. Effect of SnO2 coating on the magnetic properties of nanocrystalline CuFe2O4[J]. Solid State Communications, 2006(137): 512-516.
|
[15] |
孙艳.纳米永磁材料的微结构与有效各向异性及矫顽力[D].济南:山东大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10422-2008189964.htm
|
[16] |
Zhang X Y, Guan Y, Zhang J W.Study of interface structure of Nd2Fe14B nanocomposite magnets[J].Applied Physics Letters, 2002, 80:1966. doi: 10.1063/1.1456950
|
[17] |
Raviprasad K, Ravishankar N, Chattopadhyay K, et al. Magnetic hardening mechanism in nanocrystalline Nd2Fe14B with 0.1% Addition of Cr, Cu, Zr[J].Journal of Applied Physics, 1998, 83(2):916. doi: 10.1063/1.366778
|
[1] | DOU Zhongkun, ZHANG Jialiang, CHEN Yongqiang, WANG Chengyan. Separation of molybdenum and nickel from acidic leaching solution of melted alloy of waste hydrogenation catalyst by solvent extraction[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 1-7. DOI: 10.13264/j.cnki.ysjskx.2024.01.001 |
[2] | ZHANG Hepeng, CHEN Jinqing. Research progress of hydrophobic eutectic solvent extraction of metal ions[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 9-18. DOI: 10.13264/j.cnki.ysjskx.2021.04.002 |
[3] | WU Jianhui, DONG Bo, ZHANG Xianpeng, YE Fengchun, WANG Hongjun, JI Hongwei, GUO Fangying, QIU Shiwei, LIU Zhidong. Solvent extraction of Cu, Zn, Co from nickel sulphate solution applying P507[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 19-24. DOI: 10.13264/j.cnki.ysjskx.2018.02.004 |
[4] | Zhang Ying, Zhang Ting-an. Research progress for vanadium extraction from vanadium leach solution by solvent extraction[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 14-20. DOI: 10.13264/j.cnki.ysjskx.2017.05.002 |
[5] | HUANG Xilin, LI Liangxing, HUANG Jindi, LIAO Chunfa, TONG Changren. Extraction performance of bismuth with N235 under Cl-assisted extraction[J]. Nonferrous Metals Science and Engineering, 2017, 8(2): 19-23. DOI: 10.13264/j.cnki.ysjskx.2017.02.004 |
[6] | DING Yangli, XIAO Liansheng, CAO Zuoying, ZHANG Guiqing, ZENG Li. Separation of vanadium from sodium molybdate solution by N263[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 15-20. DOI: 10.13264/j.cnki.ysjskx.2017.01.003 |
[7] | WANG Fang, Zhao Hongxing, XIAO Yanfei, XU Zhifeng. Solvent extraction of thioarsenite by CO32--type tOMAC in alkaline solutions[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 14-18. |
[8] | CHEN Jing-qing, LIN Kai, XIONG Jia-ren, DUAN Min, HUANG Ya-xiang. Extraction of vanadium from high alkaline solution by modified quaternary ammonium salt[J]. Nonferrous Metals Science and Engineering, 2015, 6(2): 21-26. DOI: 10.13264/j.cnki.ysjskx.2015.02.004 |
[9] | LI Bo. Research advances of molybdenum solvent extraction in acidic system[J]. Nonferrous Metals Science and Engineering, 2013, 4(6): 33-36. DOI: 10.13264/j.cnki.ysjskx.2013.06.021 |
[10] | ZHANG Zi-yan. The Research and Development of Solvent Extraction in Tungsten Smelting[J]. Nonferrous Metals Science and Engineering, 2005, 19(3): 22-27, 46. |