Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
SHEN Chen, SUN Hui, ZHI Dongdong. Research progress of the quenching characteristic of 7XXX (Al-Zn-Mg-Cu) aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 70-75. DOI: 10.13264/j.cnki.ysjskx.2018.04.012
Citation: SHEN Chen, SUN Hui, ZHI Dongdong. Research progress of the quenching characteristic of 7XXX (Al-Zn-Mg-Cu) aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 70-75. DOI: 10.13264/j.cnki.ysjskx.2018.04.012

Research progress of the quenching characteristic of 7XXX (Al-Zn-Mg-Cu) aluminum alloy

More Information
  • Received Date: May 01, 2018
  • Published Date: August 30, 2018
  • The quenching characteristics and hardenability of 7XXX series (Al-Zn-Mg-Cu) aluminum alloys are reviewed. The hardenability of aluminum alloy is the property related to the quenching rate and the performance after quenching. By summarizing the mechanism of hardenability of aluminum alloys and the evaluation method of hardenability, we analyzed the factors affecting hardenability from the chemical composition, preparation process and microstructure of aluminum alloys. The results show that enhancing the hardenability is the key factor to obtain high-performance 7XXX series (Al-Zn-Mg-Cu) aluminum alloys. This paper introduces the research methods of hardenability of aluminum alloys, including the quenching-hardness testing method for determining the depth of aluminum alloy hardened layers, the isothermal aging-conducting method for determining the TTT curve of aluminum alloys, and the isothermal aging-mechanics for measuring TTP curves, performance test method, continuous cooling and phase change test method, to determine the curves of aluminum alloy CCT. In order to improve the hardenability of aluminum alloys, it is necessary to improve the aluminum alloy hardenability test methods.
  • [1]
    肖亚庆, 谢水生, 刘静安, 等.铝加工技术实用手册[M].北京:冶金工业出版社, 2005.
    [2]
    张君尧.航空结构用高纯高韧性铝合金的进展[J].轻金属, 1994(6):54-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400370763
    [3]
    田荣璋, 王祝堂.铝合金及其加工手册[M].长沙:中南工业大学出版社, 1989.
    [4]
    MICHAEL VH.Method ofnumerical analysis ofplastic flow in plane strain and 4 its application to the compression of a ductile material between rough plates[J].Metal Progress, 1977, 3:56-58.
    [5]
    HASZLER A, KEIDEL C, et a1.Recent development in aluminium alloys for aerospace applications[J].Materials Science and Engineering, 2000.2(280):102-107 doi: 10.1016-S0921-5093(99)00674-7/
    [6]
    FRIDLYANDEN J N.变形铝合金[M].重庆:科学技术出版社重庆分社, 1989.
    [7]
    DAVID D.Hall and Issam Mudawar.Optimization of quench history of aluminum parts for superior mechanical properties[J].Heat mass transfer.1996, 39(1):81-95 doi: 10.1016/S0017-9310(96)85008-3
    [8]
    王井井, 黄元春, 刘宇, 许天成.时效工艺对Al-Zn-Mg-Cu-Zr-Er铝合金组织与耐腐蚀性影响[J].有色金属科学与工程, 2018, 9(2):47-55. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201802009
    [9]
    郭世贵. 7050铝合金材料喷淋淬火的试验与模拟研究[D]. 长沙: 中南大学2010-06. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1916619
    [10]
    张新明, 陈慧, 刘胜胆, 等.Zn和Mg质量比对7055铝合金淬火敏感性的影响[J].中南大学学报(自然科学版), 2012, 43(5):1656-1661. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201205011
    [11]
    何道广. 固溶和淬火工艺对7050铝合金厚板断裂韧性的影响[D]. 长沙: 中南大学2012-05. http://cdmd.cnki.com.cn/Article/CDMD-10533-1012475893.htm
    [12]
    邓运来, 万里, 张勇, 等.固溶处理对铝合金7050-T6淬透层深度的影响[J].金属热处理, 2009, 34(8):44-47. http://d.old.wanfangdata.com.cn/Periodical/jsrcl200908013
    [13]
    张新明, 张端正, 刘胜胆, 等.基于末端淬火试验研究3种7000系铝合金的淬透性[J].中南大学学报(自然科学版), 2015, 46(2):422-426. http://www.cqvip.com/QK/90745B/201502/664714254.html
    [14]
    刘胜胆, 张新明, 黄振宝, 等.7055铝合金的淬火敏感性研究[J].中南大学学报(自然科学版), 2006, 37(5):846~849. doi: 10.3969/j.issn.1672-7207.2006.05.004
    [15]
    张勇. 7050铝合金材料淬透性的末端淬火研究[D]. 长沙: 中南大学2008-06. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1324760
    [16]
    张新明, 张种, 刘胜胆, 朱航飞.轧制变形量对7A55铝合金淬火敏感性的影响[J].中南大学学报(自然科学版), 2007, 38(4):589-594. doi: 10.3969/j.issn.1672-7207.2007.04.002
    [17]
    谢优华, 杨守杰, 戴圣龙, 等.锆元素在铝合金中的应用[J].航空材料学报, 2002, 22(4):56-61 doi: 10.3969/j.issn.1005-5053.2002.04.011
    [18]
    商宝川, 尹志民, 黄志其, 等.铝合金淬透性研究方法及其现状[J].轻合金加工技术, 2010, 38(10):4-8. doi: 10.3969/j.issn.1007-7235.2010.10.002
    [19]
    NEWKIRKJ W.The Jominy end quench for light- weight alloy development[J].Journal of Materials Engineering & Performance, 2000, 9 (4):408-415. doi: 10.1361/105994900770345809
    [20]
    熊柏青, 李锡武, 张永安, 李志辉.新型高强韧低淬火敏感性Al-7.5Zn-1.65Mg-1.4Cu-0.12Zr合金[J].中国有色金属学报, 2009, 19(9):1539-1547. doi: 10.3321/j.issn:1004-0609.2009.09.002
    [21]
    赵颖超. 2124铝合金的末端淬火及时效工艺研究[D]. 长沙: 中南大学2011-06 http://cdmd.cnki.com.cn/Article/CDMD-10533-1011180385.htm
    [22]
    李慎兰, 黄昌龙, 陈维平, 等.7003铝合金的淬火敏感性[J].材料热处理学报, 2015, 36(3):73-77. http://d.old.wanfangdata.com.cn/Thesis/Y2199590
    [23]
    STALEY J T.Quench factor analysis of aluminum alloys[J].Materials Science and Technology, 1987, 3 (11):923-935. doi: 10.1179/mst.1987.3.11.923
    [24]
    EVANCHO J W, STALEY J T.Kinetics of precipitation in aluminum alloys during continuous cooling[J].Metallurgical Transactions, 1974, 5(1):43-47. doi: 10.1007/BF02642924
    [25]
    郅东东, 孙会, 沈忱.金属材料淬火过程中温度参数相关试验的研究进展[J].有色金属材料与工程, 2017, 38(5):297-301. http://d.old.wanfangdata.com.cn/Periodical/shysjs201705009
    [26]
    张新明, 刘文军, 刘胜胆等.7050铝合金的TTP曲线[J].中国有色金属学报, 2009, 19(5):861-868. doi: 10.3321/j.issn:1004-0609.2009.05.012
    [27]
    李红英, 王晓峰, 唐宜, 等.7A04铝合金连续冷却转变曲线的测定[J].中国有色金属学报, 2010, 20(4):640-646. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201004008
    [28]
    KESSLER O, von Bargen R. Continuous cooling transfomation diagrams of aluminum a11oy of Al-4. 5Zn-1Mg[C]//Lloyd D J. 10th Intemational Conference on Aluminium A110ys, Pts 1 and 2. Trans TechPublications, 2006: 1468.
    [29]
    [30]
    王胜玉, 肖柱, 王正安等.工业化制备7050铝合金厚板显微组织与力学性能[J].有色金属科学与工程, 2017, 8(3):48-53. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017030008
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]WANG Shuhong, CHEN Budong, CAO Feifei, WU Qijun, QIAN Chunbo, XU Feixing, LI Zhongping. Preparation of TiO2/CuS composite materials and their performance in photocatalytic degradation of polluted wastewater[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 877-889. DOI: 10.13264/j.cnki.ysjskx.2024.06.011
    [3]XIANG Ziqi, SHEN Huiyuan, HE Yang, SHENG Xiaofei, XIAO Zhu. Research on improving the corrosion resistance of conductive CuSn alloy for socket[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 76-82. DOI: 10.13264/j.cnki.ysjskx.2022.01.010
    [4]FANG Yi, ZHAO Wenning, HAN Xiuxun. Effects of thickness of absorption layer and buffer layer on the performance of Cu3BiS3 solar cell[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 50-55. DOI: 10.13264/j.cnki.ysjskx.2021.02.007
    [5]TIAN Yabin, YE Changmei, ZHAO Yujuan, LI Linshan, YANG Shaohua. Inhibiting action of imidazoline on the corrosion of 2099 Al-Li alloy in NaCl solution[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 14-20. DOI: 10.13264/j.cnki.ysjskx.2018.05.003
    [6]MA Jimiao, LIU Feng, LIU Longming, SHAO Ye, ZHENG Yun, PENG Lijun. Cold hardening and recrystallization temperature of Cu-Ni-Si-P alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(2): 43-46. DOI: 10.13264/j.cnki.ysjskx.2017.02.007
    [7]Luo Di-qiang, Lai Chao-bin, Peng Yuan-long, Xie Fei-ming, Wang Yan-lin, Zhang Qin. Phase transformations research on 51CrV4 spring steels[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 61-66. DOI: 10.13264/j.cnki.ysjikx.2016.05.011
    [8]LI Sanhua, LEI Qian, LI Zhou, ZHANG Liang, WANG Mengying, LIU Huiqun. Micro-structures and properties of ultra-high strength Cu-Ni-Si-Mg-Cr alloy[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 35-38,78. DOI: 10.13264/j.cnki.ysjskx.2014.05.006
    [9]HE Fu-ping, LIU Feng, LI Jian-yun, ZHANG Jing-en, WANG Zhi-xiang. The effects of solution process and aging on Al-Mg-Si-Cu alloy's microstructure and properties[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 44-48. DOI: 10.13264/j.cnki.ysjskx.2013.01.013
    [10]ZHANG Ming-ming, WU Yu. On the aging behavior of Cu-Ni-Si-Zr alloy[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 12-16. DOI: 10.13264/j.cnki.ysjskx.2012.02.017

Catalog

    Article Metrics

    Article views (149) PDF downloads (14) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return