Citation: | ZENG Debin, YANG Kai, LI Xiaoxiao, YAO Zhiqiang, LIU Renyue, WU Zhen, TIAN Jian, YU ChangLin. Synthesis and characterization of core-shell like Ag2CO3@AgBr composite photocatalyst and its high visible light photocatalytic performance[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 51-59. DOI: 10.13264/j.cnki.ysjskx.2018.01.009 |
[1] |
YU C L, BAI Y, HE H B, et al. Synthesis, characterization and photocatalytic performance of rod-shaped Pt/PbWO4 composite microcrystals[J]. Chinese Journal of Catalysis, 2015, 36:2178-2185. doi: 10.1016/S1872-2067(15)61009-9
|
[2] |
YU C L, LI G, KUMAR S, et al. Stable Au25(SR)18/TiO2 composite nanostructure with enhanced visible light photocatalytic activity[J]. The Journal of Physical Chemistry Letters, 2013, 17(4): 2847-2852.
|
[3] |
薛霜霜, 何洪波, 吴榛, 等.研磨-焙烧法制备BiOI/BiOBr异质结光催化剂及其光催化性能[J].有色金属科学与工程, 2017, 8(1):86-93. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201701015
|
[4] |
LI J D, YU C L, FANG W, et al. Preparation, characterization and photocatalytic performance of heterostructured AgCl/Bi2WO6 microspheres[J]. Chinese Journal of Catalysis, 2015, 36: 987-993. doi: 10.1016/S1872-2067(15)60849-X
|
[5] |
YU C L, ZHOU W Q, ZHU L H, et al. Integrating plasmonic Au nanorods with dendritic like α-Bi2O3/Bi2O2CO3 heterostructures for superior visible-light-driven photocatalysis[J]. Applied Catalysis B: Environmental, 2016, 184: 1-11. doi: 10.1016/j.apcatb.2015.11.026
|
[6] |
魏龙福, 余长林, 陈建钗, 等.水热法合成Ag2CO3/ZnO异质结复合光催化剂及其光催化性能[J].有色金属科学与工程, 2014, 5(1): 47-53. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201310021
|
[7] |
YU C L, ZHOU W Q, LIU H, et al. Design and fabrication of microsphere photocatalysts for environmental purification and energy conversion[J]. Chemical Engineering Journal, 2016, 287: 117-129. doi: 10.1016/j.cej.2015.10.112
|
[8] |
何洪波, 薛霜霜, 余长林.钨基半导体光催化剂研究进展[J].有色金属科学与工程, 2015, 6(5): 32-39. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201505007
|
[9] |
ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271. doi: 10.1126/science.1061051
|
[10] |
YU C L, FAN C, MENG X J, et al. A novel Ag/BiOBr nanoplate catalyst with high photocatalytic activity in the decomposition of dyes[J]. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103(1): 141-151. doi: 10.1007/s11144-011-0291-6
|
[11] |
ISHIKAWA A, TAKATA T, KONDO J N, et al. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ≤650 nm)[J]. Journal of the American Chemical Society, 2002, 124(45): 13547-13553. doi: 10.1021/ja0269643
|
[12] |
ZOU Z G, YE J H, SAYAMA K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J]. Nature, 2001, 414(6864): 625-627. doi: 10.1038/414625a
|
[13] |
TSUJI I, KATO H, KUDO A. Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst[J]. Angewandte Chemie, 2005, 117(23): 3631-3634. doi: 10.1002/(ISSN)1521-3757
|
[14] |
WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. doi: 10.1038/nmat2317
|
[15] |
XIANG Q, YU J J. Graphene-based photocatalysts for hydrogen generation[J]. The Journal of Physical Chemistry Letters, 2013, 4(5): 753-759. doi: 10.1021/jz302048d
|
[16] |
ONG W J, GUI M M, CHAI S P, et al. Direct growth of carbon nanotubes on Ni/TiO2 as next generation catalysts for photoreduction of CO2 to methane by water under visible light irradiation[J]. Rsc Advances, 2013, 14(3): 4505-4509. doi: 10.1007/978-3-319-48009-1_9
|
[17] |
TANG J T, GONG W, CAI T J, et al. Novel visible light responsive Ag@(Ag2S/Ag3PO4) photocatalysts: synergistic effect between Ag and Ag2S for their enhanced photocatalytic activity[J]. RSC Advances, 2013, 3(8): 2543-2547. doi: 10.1039/c2ra22245k
|
[18] |
YI Z G, YE J H, KIKUGAWA N, et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation[J]. Nature Materials, 2010, 9(7): 559-564. doi: 10.1038/nmat2780
|
[19] |
BI Y P, OUYANG S X, UMEZAW A N, et al. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties[J]. Journal of the American Chemical Society, 2011, 133(17): 6490-6492. doi: 10.1021/ja2002132
|
[20] |
BI Y P, OUYANG S X, CAOJ Y, et al. Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X=Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities[J]. Physical Chemistry Chemical Physics, 2011, 13(21): 10071-10075. doi: 10.1039/c1cp20488b
|
[21] |
YANG X F, CUI H Y, LI Y, et al. Fabrication of Ag3PO4-graphene composites with highly efficient and stable visible light photocatalytic performance[J]. ACS Catalysis, 2013, 3(3): 363-369. doi: 10.1021/cs3008126
|
[22] |
TANG J T, LIU Y H, LI H Z, et al. A Novel Ag3AsO4 visible-light-responsive photocatalyst: facile synthesis and exceptional photocatalytic performance[J]. Chemical Communications, 2013, 49(48): 5498-5500. doi: 10.1039/c3cc41090k
|
[23] |
LI J D, FANG W, YU C L, et al. Ag-based semiconductor photocatalysts in environmental purification[J]. Applied Surface Science, 2015, 358: 46-56. doi: 10.1016/j.apsusc.2015.07.139
|
[24] |
YANG J H, WANG D, HAN H X, et al. Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1900-1909. doi: 10.1021/ar300227e
|
[25] |
WANG W S, DU H, WANG R X, et al. Heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible light[J]. Nanoscale, 2013, 5(8): 3315-3321. doi: 10.1039/c3nr00191a
|
[26] |
YU C L, LI G, KUMAR S, et al. Phase transformation synthesis of novel Ag2O/Ag2CO3 heterostructures with high visible light efficiency in photocatalytic degradation of pollutants[J]. Advanced Materials, 2014, 26(6): 892-898. doi: 10.1002/adma.v26.6
|
[27] |
LI J D, WEI L F, YU C L, et al. Preparation and characterization of graphene oxide/Ag2CO3 photocatalyst and its visible light photocatalytic activity[J]. Applied Surface Science, 2015, 358: 168-174. doi: 10.1016/j.apsusc.2015.07.007
|
[28] |
YU C L, WEI L F, ZHOU W Q, et al. Enhancement of the visible light activity and stability of Ag2CO3 by formation of AgI/Ag2CO3 heterojunction[J]. Applied Surface Science, 2014, 319: 312-318. doi: 10.1016/j.apsusc.2014.05.158
|
[29] |
SONG S Q, CHENG B, WU N S, et al. Structure effect of graphene on the photocatalytic performance of plasmonic Ag/Ag2CO3-rGO for photocatalytic elimination of pollutants[J]. Applied Catalysis B: Environmental, 2016, 181: 71-78. doi: 10.1016/j.apcatb.2015.07.034
|
[30] |
CAMPBELL C T, PAFFETT M T. The interactions of O2, CO and CO2 with Ag (110)[J]. Surface science, 1984, 143(2): 517-535. http://www.nature.com/subjects/theoretical-chemistry/research.atom
|
[31] |
BIGELOW R W. An XPS study of air corona discharge-induced corrosion products at Cu, Ag and Au ground planes[J]. Applied Surface Science, 1988, 32(1): 122-140. https://www.researchgate.net/publication/238140768_Corona_Corrosion_of_Aluminum_in_Air
|
[32] |
XU C W, LIU Y Y, HUANG B B, et al. Preparation, characterization, and photocatalytic properties of silver carbonate[J]. Applied Surface Science, 2011, 257(20): 8732-8736. doi: 10.1016/j.apsusc.2011.05.060
|
[33] |
YU C L, YANG K, SHU Q, et al. Preparation, characterization and photocatalytic performance of Mo-Doped ZnO photocatalysts[J]. Science China Chemistry, 2012, 55(9): 1802-1810. doi: 10.1007/s11426-012-4721-8
|
[34] |
WANG P, HUANG B B, QIN X Y, et al. Ag@AgCl: A highly efficient and stable photocatalyst active under visible light[J]. Angewandte Chemie International Edition, 2008, 47(41): 7931-7933. doi: 10.1002/anie.v47:41
|
[35] |
YIN L, WANG Z, LU L, et al. Universal degradation performance of a high-efficiency AgBr/Ag2CO3 photocatalyst under visible light and an insight into the reaction mechanism[J]. New Journal of Chemistry, 2015, 39(6): 4891-4900. doi: 10.1039/C5NJ00385G
|
[1] | SU Yao, GUO Hanjie, GUO Jing, LUO Yiwa, LI Gang, YANG Qingsong, ZHENG Xiaodan. Effect of Ti content on solidification organization and non-metallic inclusions in 0Cr25Al5 electrothermal alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 8-16. DOI: 10.13264/j.cnki.ysjskx.2025.01.002 |
[2] | LI Shen, QIU Yaoheng, CHEN Chaoyi, LI Junqi, WANG Linzhu, LI Zhenglong. Research progress on inclusion in aluminum[J]. Nonferrous Metals Science and Engineering, 2024, 15(5): 660-669. DOI: 10.13264/j.cnki.ysjskx.2024.05.004 |
[3] | ZANG Ruoyu, LI Jing, HUANG Fei. Effect of rare earth cerium on inclusions and hot ductility of high-strength steel for construction machinery[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 449-456. DOI: 10.13264/j.cnki.ysjskx.2024.03.015 |
[4] | LI Yan, ZHANG Jiongming, YIN Yanbin. Inclusions in IF steel continuous casting slab and hot rolled sheet[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 18-26. DOI: 10.13264/j.cnki.ysjskx.2020.06.003 |
[5] | WEN Kun, LI Jing, YAN Wei, SUN Yanhui. Study on the control of D inclusion in the SWRH82B steel by CaO-SiO2-Al2O3-CaF2 refining slag[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 7-15. DOI: 10.13264/j.cnki.ysjskx.2019.04.002 |
[6] | QU Miao, LIU Yu, XIAO Zhengbing. A first principle study on the basic properties of inclusions in aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 1-10. DOI: 10.13264/j.cnki.ysjskx.2018.06.001 |
[7] | YIN Zhenjiang, PENG Yuanlong, CAI Xina, WANG Zhigang, WU Chunhong, LAI Chaobin. Effect of Yttrium Based Rare Earth on Inclusions in 51CrV4 Spring Steel[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 26-30. DOI: 10.13264/j.cnki.ysjskx.2017.04.005 |
[8] | SONG Gaoyang, SONG Bo, YANG Yuhou, JIA Shujian, LI Juncheng, XIN Wenbin. Application of super gravity to separating non-metallic inclusions from 5052 aluminum alloy melt[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 29-34. DOI: 10.13264/j.cnki.ysjskx.2015.01.006 |
[9] | ZHANG Li-heng, WANG Guo-cheng, ZHU Qing-de. Thermodynamic analysis formed by non-metallic inclusions in welding gas vessel steel HP295[J]. Nonferrous Metals Science and Engineering, 2011, 2(6): 22-28. |
[10] | YUAN Yuan_ming. Experimental Investigation of Separating Whole grade Ilmenite by SLon Magnetic Separators[J]. Nonferrous Metals Science and Engineering, 2002, 16(3): 19-21. |
1. |
熊星强,李长荣,陈龙海,陈璐,宁州韶. 稀土钇对高碳硬线钢中氧化铝夹杂物的改性研究. 稀有金属. 2024(04): 508-516 .
![]() | |
2. |
王飞,牛家振,郭盛琦,王俊利,郭靖. 氩气保护电渣重熔脱硫预测研究. 有色金属科学与工程. 2024(04): 487-496 .
![]() | |
3. |
王利,刘成宝,李浩秋,王毅,孙宗辉,刘春伟,杨超云,付志豪. 稀土对20CrMnTi齿轮钢夹杂物和疲劳性能的影响. 特殊钢. 2024(06): 117-124 .
![]() |