Abstract:
The number of stirring blade layers has an extremely important effect on the stirring characteristics of the draft tube stirred tank. In this paper, the physical model data of a draft tube stirred tank with a volume of 10 m
3 in a rare earth enterprise in the southern part of Jiangxi province were taken as a reference, and a three-dimensional model of the draft-tube stirred tank and different layers of the stirring blades was established using SolidWorks 3D software. The 3D model was processed by the fluid software FLUENT, and the blade intervals of 450 mm were selected as basic data according to the relevant formula. The glycerin aqueous solution was selected as the carrier according to principle of similarity, and the stirring process of material and liquid in the stirring tank with different stirring blade layers number was simulated. Based on the parameters of time-averaged velocity distribution, velocity, turbulent kinetic energy, and power consumption, the stirring characteristics in draft tube mixing tank with different stirring blade layer numbers were analyzed and evaluated, verifying the optimal stirring characteristics of the draft-tube stirred tank with double-layer impeller blades.