Nitrite electrochemical sensor based on graphene quantum dots modified electrode
-
摘要: 文章将石墨烯量子点 (GQDs) 固载在裸玻碳 (GC) 电极表面形成石墨烯量子点修饰膜,制备亚硝酸根 (NO2-) 电化学传感器.利用透射电镜 (TEM) 和X-射线衍射 (XRD) 对石墨烯量子点材料进行表征;采用循环伏安 (CV)、差分脉冲伏安 (DPV) 和电流-时间曲线 (I-T) 技术研究NO2-在石墨烯量子点修饰电极表面的电化学行为.实验结果表明,该电化学传感器对NO2-具有良好的电催化氧化性,在1~29 μmol/L浓度范围呈现良好的线性关系,检出限为3.33×10-7 mol/L (S/N=3).该电化学传感器具有较宽的检测范围、低的检出限、好的选择性.Abstract: Material of grapheme quantum dots was dropped on the surface of glassy carbon electrode to form its film, and nitrite (NO2-) electrochemical sensor was prepared. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were utilized to characterize grapheme quantum dots (GQDs). Meanwhile, electrochemical behavior of nitrite was researched by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and current-time curve (I-T) on the surface of modified electrode. The experimental results show that electrochemical sensor exhibits a good electrocatalysis to NO2- and possesses a broad linear range in 1~29 μmol/L with detection limit of 3.33×10-7 mol/L (S/N=3). The electrochemical sensor shows the characteristics of wide detection range, low detection limit and good stability.
-
Keywords:
- graphene quantum dots /
- modified electrode /
- nitrite /
- electrochemical sensor
-
采用高强钢是实现汽车轻量化和保障安全性的重要途径[1]。尽管超高强度钢板具有较高的强度,但它在室温下变形能力差、所需的冲压力大,容易开裂,冲压后的复杂零件回弹增加,导致零件尺寸和形状不稳定[2]。通过热冲压成型技术获得的超高强钢能很好地解决上述问题[3-4]。
热成形钢的技术原理是加热钢板并保温使其均匀奥氏体化,然后进行冲压成形并保压一段时间,钢板在成形及保压过程中完成淬火,最终获得内部组织为马氏体的超高强钢零部件[5-6]。热成形工艺主要应用在汽车各个零件上,因其强度高,可更好地推进汽车轻量化的研究进展。目前,热冲压用的高强钢主要是含硼元素的钢板,随着技术工艺不断发展,目前开发出了很多种类,例如18MnB5、22MnB5、30MnB5等,其中22MnB5在热冲压中应用最为广泛,该钢种具有较好的综合力学性能[7-10]。而该牌号的钢板需要进一步探索其热冲压成形技术,以及在不同模具下获得的热成形钢组织和性能的差异和回弹变化,相关研究较少[11]。
本文采用冷硬态热成形钢作为实验用钢,通过金相显微组织、拉伸性能等方法研究不同热成形工艺参数对组织性能的影响。这将为热冲压型钢的实际生产和应用提供重要的理论指导意义。
1 实验方法
采用的原始材料是国内某钢厂生产的汽车用热成形钢,其主要化学成分如表 1所列。连铸坯加热温度为1 230 ℃,开轧温度1 150 ℃,精轧温度1 050 ℃,终轧温度860 ℃,最后在600 ℃进行卷取;之后将热轧板冷轧至1.20 mm厚,并从冷硬态钢板取样。
表 1 热成形钢的化学成分Table 1. The chemical composition of hot-formed steel从冷轧板中切取310 mm×210 mm×1.20 mm和260 mm×180 mm×1.20 mm两种规格的试样各8块,长度方向为轧向。分别采用平型冲压模和U型冲压模进行热成形试验。首先在试样表面焊上热电偶,然后将试样转移至加热炉,在设定的温度下保温5 min,设置830、860、890 ℃和920 ℃不同加热保温温度;热电偶通过转换器连接电脑,可以显示钢板的实时温度。保温结束后迅速取出试样并放入模具中进行快速热冲压成形试验。试验设备和热冲压成形后的平型件、U型件如图 1所示。
从冷轧板及热成形后的钢板切取金相试样和拉伸试样。金相试样热镶后采用砂纸磨至2000号,将试样表面机械抛光至光亮后用4%硝酸酒精溶液侵蚀10 s,通过蔡司光学显微镜和ZEISS扫描电镜观察试样显微组织[12]。采用最大拉力100 kN的电子万能试验机在4 mm/min的拉伸速度下进行拉伸试验[13],拉伸试样按GB/T 228.1—2010进行制样,切取标距为50 mm的非比例拉伸试样。
2 实验结果与分析
2.1 热成形钢的组织性能
冷轧钢板的组织性能见图 2。
热成形前的金相组织为图 2(a),可以看出未经热处理的冷轧钢板组织主要是铁素体和珠光体。图 2(b)是拉伸曲线,其抗拉强度为466 MPa,屈服强度为265 MPa,伸长率29.5%,显微维氏硬度值为158。可以看到有轻微的屈服平台,在这一阶段应力几乎随应变不升高,不发生强化行为,超过屈服平台之后材料才开始表现出强化行为。这主要是溶质原子或杂质原子组成的柯氏气团对位错的钉扎作用导致的。
2.2 加热温度对组织性能的影响
从图 3(a)平型件的应力应变曲线和图 3(b)平型件的强度与硬度性能比较,可以看出在830 ℃时冲压后平型件的抗拉强度比较低;在860 ℃和890 ℃其抗拉强度较高,在890 ℃时达到最大值;在920 ℃时抗拉强度都有所降低。平型件的抗拉强度、屈服强度与硬度性能变化一致,温度从830 ℃到920 ℃,平型件的性能先增加后降低,并且在860 ℃时性能较优。
图 4、图 5所示分别为不同温度下,平型件在光学显微镜和扫描电镜(SEM)下的组织照片。从图 4(a)和图 5(a)可以看出,在加热温度为830 ℃时存在部分铁素体,一是因为试样未完全奥氏体化,二是因为加热的钢板向模具转移过程中温度下降生成部分铁素体,铁素体的存在会导致抗拉强度较低。随着加热温度升高到860 ℃(如图 4(b)和图 5(b))以及升高至890 ℃(如图 4(c)和图 5(c)),奥氏体化更充分,转变生成的马氏体数量更多,可以看到大量的板条马氏体,所以对应图 3(b)所示的860 ℃与920 ℃抗拉强度较高。但是,当加热温度达到920 ℃时(如图 4(d)和图 5(d)),原始奥氏体晶粒尺寸粗大,根据Hall-Petch定律可知将导致钢板的抗拉强度下降[14-17]。
2.3 不同模具热成形对组织性能的影响
图 6所示为平型件和U型件及冷轧钢板的性能对比图。热成形后的平型件和U型件的性能都得到了大幅度的提高,如图 6(a)抗拉强度由不足500 MPa增加到最高可达1 500 MPa以上,屈服强度由265 MPa增加至1 200 MPa以上,如图 6(b),硬度数值也得到大幅增加,如图 6(c),同时可以发现在相同热冲压成形条件下,U型件的性能比平板件优异。
图 7所示为U型件底部的扫描照片,可以发现在830 ℃下图 7(a)含有少量铁素体,但是与图 5(a) 830 ℃平板件相比,铁素体含量更少;从图 7(b)至图 7(d)可以看出,从860 ℃到920 ℃的U型件底部晶粒尺寸逐渐增大。通过比较图 5和图 7发现U型件中马氏体组织分布更加均匀细小,这是因为U型件在热成形时发生变形,形变储能有利于马氏体的形成及细化。所以U型件的力学性能和组织相对平型件更加优异和细小。
2.4 U型件底部和侧面的性能区别
以上论述了U型件底部的抗拉强度高于平板件,但是U型件的结构比平板件较为复杂,U型件包括法兰、侧部和底部等几个部位。为了研究U型板侧部和底部位之间的性能变化,对U型件的侧部和底部的性能进行分析,结果如图 8所示。
可以看出在相同条件下,U型件侧面的抗拉强度、屈服强度与硬度都比底部的低, U型件底部性能比侧面更加优异。图 9所示为860、890 ℃温度时U型件底部和侧部在扫描电镜下的组织照片。从图 9(a)和图 9(b)可以看出,U型件的侧部组织虽然主要为马氏体,但也有少量铁素体存在,而在图 9(c)和图 9(d)中几乎没有铁素体,同时原奥氏体晶粒也比U型件侧面的晶粒更小,这是因为热成形时U型模的底部先与钢板接触并紧贴,而U型模的侧面后与钢板接触,从而导致U型件的侧面冷却速度稍慢,侧面马氏体转变不够完全,冷却后组织中含有图 9(a)和图 9(b)中的铁素体组织,所以侧面相对底面的力学性能较差[18]。
2.5 型件回弹情况
通常钢板在U型模中热成形完成后会出现回弹现象,图 10(a)为热成形后U型件和U模的对比图,其中侧面和法兰都相对原来发生了一定角度的向内偏移。判断U型件回弹情况一般是通过比较法兰与侧面之间的夹角θ1,以及底面与侧面之间的夹角θ2,与原U型模的2个夹角的差的绝对值大小,实验用的U型模的2个夹角为120°。图 10(b)所示为不同温度条件下的回弹情况,计算出在不同的温度条件下平均回弹为17°,且2个角度的回弹变化情况大致相同。而在830、890 ℃和920 ℃时的回弹均在17°以上,但860 ℃时回弹最小,平均为16.6°,这是因为在860 ℃热成形时,显微组织分布更均匀,组织中的缺陷更少,残余应力较低,残余应力是产生回弹的主要原因,所以在860 ℃时,回弹最小,同时也表明该温度下进行热冲压成形后的性能更加优异[19-20]。
3 结论
1)初始冷轧钢板组织主要是铁素体和珠光体,其抗拉强度为466 MPa,屈服强度为265 MPa,伸长率29.5%,显微维氏硬度值为158,拉伸曲线中有轻微的屈服平台。
2)在加热温度为830 ℃时热成形后试样存在部分铁素体,强度与硬度性能最低,随着加热温度升高,热成形后平板的力学性能显著升高后逐渐降低,在860 ℃时性能较优,而在920 ℃时力学性能降低是晶粒粗大导致的。
3)U型件在热成形时发生变形,其底部力学性能比平型件以及U型件的侧面更加优异,且U型件在热成形后侧面和法兰都产生了一定角度的向内偏移回弹,在860 ℃时的回弹最小,平均为16.6°。在加热温度860 ℃后采用U型模具的热成形钢的各项性能较优。
-
-
[1] LIJINSKY W, EPSTEIN S S. Nitrosamines as environmental carcinogens[J]. Nature, 1970, 225: 21-23. doi: 10.1038/225021a0
[2] MIRVISH S S. Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC[J]. Cancer Letters, 1995, 93(1): 17-48. doi: 10.1016/0304-3835(95)03786-V
[3] CHEN H Q, WU Y, ZHANG Y Y, et al. Determination of chromium (Ⅲ) in aqueous solution using CePO4: Tb3+nanocrystals in a fluorescence resonance energy transfer system[J]. Biological and Chemical Luminescence, 2014, 29(6): 642-648. doi: 10.1002/bio.2599
[4] VILIAN A, CHEN S M, KWAK C H. Immobilization of hemoglobin on functionalized multi-walled carbon nanotubes-poly-l-histidine-zinc oxide nanocomposites toward the detection of bromate and H2O2[J]. Sensors and Actuators B (Chemical), 2016, 224: 607-617. doi: 10.1016/j.snb.2015.10.099
[5] ZHANG Y Y, BAI X Y, WANG X M, et al. Highly sensitive graphene Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection[J]. Analytical Chemistry, 2014, 86: 9459-9465. doi: 10.1021/ac5009699
[6] LIU J Y, WANG X H, WANG T S, et al. Functionalization of monolithic and porous three-dimensional graphene by one-step chitosan electrode position for enzymatic biosensor[J]. ACS Applied. Material Interfaces, 2014(6): 1997-2002.
[7] AKHAVAN O, GHADERI E, RAHIGHI R. Toward single-DNA electrochemical biosensing by grapheme nanowalls[J]. ACS NANO, 2012, 6(4): 2904-2916. doi: 10.1021/nn300261t
[8] GAI S L, LI C X, YANG P P, et al. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications[J]. Chemical Reviews, 2014, 114(4): 2343-2389. doi: 10.1021/cr4001594
[9] ZHANG S, LI B Q, SHENG Q L, et al. Electrochemical sensor for sensitive determination of nitrite based on the CuS-MWCNT nanocomposites[J]. Journal of Electroanalytical Chemistry, 2016, 769: 118-123. doi: 10.1016/j.jelechem.2016.03.025
[10] 郑冬云, 张倩倩, 刘晓军, 等.基于PVN-GO复合膜的亚硝酸盐电化学传感器[J].传感器与微系统, 2014, 33(12):60-63. http://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201412019.htm [11] 李扬, 彭本遵, 弓瑾, 等.基于血红蛋白、血红素的亚硝酸盐传感器的构建[J].化学通报, 2014, 77(3):255-259. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGHY201308006128.htm [12] 韩瑞芳, 曹艳萍, 王若珩, 等. Nano-Au/复合壳聚糖@纳米碳修饰金电极检测亚硝酸盐[J].化学传感器, 2015, 35(1):57-61. http://www.cnki.com.cn/Article/CJFDTOTAL-HXCH201501011.htm [13] CANBAY E, SAHIN B, KIRAN M, et al. MWCNT-cysteamine-Nafion modified gold electrode based on myoglobin for determination of hydrogen peroxide and nitrite[J]. Bioelectrochemistry, 2015, 101: 126-131. doi: 10.1016/j.bioelechem.2014.09.001
[14] 魏龙福, 余长林.石墨烯/半导体复合光催化剂的研究进展[J].有色金属科学与工程, 2013, 4(3):34-39. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201303007 [15] 朱辰杰, 洪瑞金, 温和瑞.石墨烯掺杂氧化锡薄膜的结构与光学性能的研究[J].有色金属科学与工程, 2012, 3(6):13-16. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201206003 [16] 于浩, 王毅, 简选, 等.电化学方法制备石墨烯修饰电极在亚硝酸根检测中的应用[J].江西师范大学学报 (自然科学版), 2013, 37(1):79-83. http://www.cnki.com.cn/Article/CJFDTOTAL-CAPE201301020.htm [17] 王小萍, 刘娇, 龚晨晨, 等.石墨烯碳糊电极的制备及其性能研究[J].应用化工, 2014, 43(7): 1196-1199. http://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201407010.htm [18] WU X, TIAN F, WANG W X, et al. Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing[J]. Journal of Materials Chemistry C, 2013(1): 4676-4684. http://pubs.rsc.org/en/content/articlelanding/2013/nr/c3tc30820k#!
[19] ZHANG M, BAI L L, SHANG W H, et al. Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells[J]. Journal of Materials Chemistry, 2012, 22: 7461-7467. doi: 10.1039/c2jm16835a
[20] LIU J Q, HE X X, WANG K M, et al. A highly sensitive electro chemiluminescence assay for protein kinase based on double-quenching of graphene quantum dots by G-quad-ruplex-hemin and gold nanoparticles[J]. Biosensors and Bioelectronics, 2015, 70: 54-60. doi: 10.1016/j.bios.2015.03.026
[21] HUMMERS WS, OFFEMAN RE. Preparation of graphitic oxide[J].Journal of American Chemical Society, 1958, 80(60): 1339.
[22] ZHANG P, ZHUO Y, CHANG Y Y, et al. Electro chemiluminescent grapheme quantum dots as a sensing platform: adual amplification for microRNA assay[J].Analytical Chemistry, 2015, 87(20):10385-10391. doi: 10.1021/acs.analchem.5b02495
[23] STOBINSKI L, LESIAK B, MALOLEPSZY A, et al. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods[J]. Journal of Electron Spectroscopy and Related Phenomena, 2014, 195: 145-154. doi: 10.1016/j.elspec.2014.07.003
[24] ZHANG M, BAI L L, SHANG W H, et al. Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells[J]. Journal of Materials Chemistry, 2012, 22: 7461-7467. doi: 10.1039/c2jm16835a
[25] BAI J, WU L P, WANG X J, et al. Hemoglobin-graphene modified carbon fiber microelectrode for direct electrochemistry and electrochemical H2O2sensing[J]. Electrochimica Acta, 2015, 185: 142-147. doi: 10.1016/j.electacta.2015.10.100