离子型稀土一维垂直入渗规律及最大粒径的影响试验研究

Experimental research on the one dimensional vertical infiltration rule of ionic rare earth and the effects of maximum particle size

  • 摘要: 为了研究不同最大粒径离子型稀土土样对入渗规律的影响,利用自制的试验装置进行离子型稀土垂直入渗试验.水头高度恒定为 6 cm,土样最大粒径分别为 2.36 mm、1.18 mm、0.6 mm 和 0.3 mm. 在试验结果的基础上,利用改进的 Green-Ampt 模型分析离子型稀土入渗的饱和导水率和基质吸力. 结果表明,随着入渗时间的递增,累积入渗深度和湿润锋运移速率分别呈 “快速增加-缓慢发展 ”和 “快速减小-缓慢发展”的趋势.湿润锋运移速率与入渗时间之间满足幂函数关系,土样最大粒径对幂函数参数有较大影响.入渗率与湿润锋倒数之间具有良好的线性相关性.随着土样最大粒径的增加,饱和导水率和基质吸力也逐渐增加,二者与最大粒径之间呈指数函数关系.

     

    Abstract: In order to study the infiltration laws of ionic type rare earth and the influences of maximum particle size on infiltration laws, vertical infiltration tests on ionic rare earth were carried out by self -made testing equipment with constant water head height being 6cm, and the maximum grain sizes of samples being 0.3mm, 0.6 mm, 1.18 mm and 2.36 mm respectively. Based on the experimental results, the ionic type rare earth's saturated hydraulic conductivity and matric suction of infiltration were analyzed by the modified Green-Ampt model. The results show that the infiltration c umulative depth indicates a trend of "rapidly increasing, then slowly developing", and changing rate of wetting front, however, has a trend of "sharply decreasing, then slowly developing" with the increasing infiltration time. The relationship between wetting front changing rate and infiltration time is applied to power function, and maximum particle size of soil samples exerts a considerable influence on the parameters of power function. The infiltration rate and the reciprocal of the wetting front have a good linear correlation. Saturated hydraulic conductivity and matric suction increase with the increasing of soil sample particle size, and the relationship between both of them and the maximum particle sizes is exponential.

     

/

返回文章
返回