Citation: | WANG Wenshan, GUO Zhancheng. Supergravity purification and regeneration of waste Al-Cu alloy[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 383-391. DOI: 10.13264/j.cnki.ysjskx.2024.03.008 |
In this paper, based on the difference in melting points of different impurity phases in 2011 Al-Cu alloy, the separation law of impurity elements Fe and Pb and beneficial elements Al and Cu in the alloy was investigated with the help of the feature of enhanced filtration and separation in the supergravity field. The results show that the impurities in raw materials after the high-temperature remelting and recrystallization processes gather between the grain boundaries of the aluminum matrix. In the high-temperature supergravity field, low-melting-point impurities could be separated and removed through the pores between the grain boundaries, and when the supergravity separation time is ≥ 1 min, the Fe and Pb content no longer changes with time. Increasing the supergravity coefficient and temperature are conducive to the removal of Fe and Pb, but the recovery of Al and Cu is reduced. Taking into account the content of Fe and Pb, as well as the recovery rates of Al and Cu, the optimal parameters for the supergravity separation process are determined as follows: a supergravity coefficient of 600, a separation temperature of 610°C, and a separation time of 1 min. Under these parameters, the Fe and Pb contents are purified to 0.06% and 0.08%, respectively. The recovery rates of Al and Cu recoveries are 95.64% and 67.90%, respectively, and the scrap Al -Cu alloy in the total percentage of Al and Cu from 97.91% to 99.72%.
[1] |
GUTOWSKI T G, SAHNI S, ALLWOOD J M, et al. The energy required to produce materials: constraints on energy-intensity improvements, parameters of demand[J]. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences,2013,371(1986):2012003.
|
[2] |
CAPUZZI S, TIMELLI G. Preparation and melting of scrap in aluminum recycling: A review[J]. Metals (Basel), 2018,8(4):249.
|
[3] |
RAABE D, PONGE D, UGGOWITZER P J, et al. Making sustainable aluminum by recycling scrap: The science of “dirty” alloys[J].Progress in Materials Science, 2022,128:100947.
|
[4] |
高安江, 王刚, 曲信磊,等. 废铝再生预处理过程中的杂质分离和分类分选技术研究[J]. 再生资源与循环经济, 2015, 8(2):33-36.
|
[5] |
DUPARC O H. Alfred Wilm and the beginnings of Duralumin[J]. International Journal of Materials Research,2022,96(4):398-405.
|
[6] |
黄志其,尹志民.无铅易切削铝合金[J].材料导报,2006, 20(12):62-65.
|
[7] |
ARBAB A, BOISSONNET L, DIAWARA J, et al. Method for recycling scrap of 2xxx or 7xxx series alloy: US20170166997[P]. 2017-06-15.
|
[8] |
BARTGES C W. 2XXX series aluminum alloy: US6113850[P]. 2000-09-05.
|
[9] |
倪红军.新型溶剂对铝熔体覆盖保护和净化的研究[D].上海:上海交通大学, 2003.
|
[10] |
贝文韬, 沈觉明, 张国维. 铝硅系合金精炼变质综合剂[J]. 特种铸造及有色合金, 1987, 7(5):24-28.
|
[11] |
王胜兰. 国际再生铝产业的发展与创新[J].世界有色金属, 2006(10):25-26.
|
[12] |
王耀武,冯乃祥,孙挺,等.自然沉降法去除铝硅合金中铁相的机制探讨[J].稀有金属,2010,34(1):28-33.
|
[13] |
陈渭臣,黄兴波.铝合金熔体处理的研究近况[J].铸造,2003(6):384-386.
|
[14] |
佚名. 《原铝及其合金的熔炼与铸造》一书2005年10月由冶金工业出版社出版[J]. 轻金属, 2007(10):71.
|
[15] |
官可湘, 李洁, 倪大兴. 铝及铝合金熔体净化剂研究进展[J]. 化学世界, 2007, 48(6):370-373.
|
[16] |
李天晓,许振明,张雪萍,等.电磁分离降低铝硅合金中铁含量[J]. 上海交通大学学报, 2001, 35(5): 664-667.
|
[17] |
张海珍,白培康,李士龙.铝及铝合金净化处理工艺研究[J]. 新技术新工艺, 2009(7):126-129.
|
[18] |
张小新,王江,任忠鸣.金属熔体电磁净化技术研究进展[J].铸造技术,2022,43(9):761-769.
|
[19] |
孙德勤,徐正亚,戴军.废铝熔体中去除夹杂铁元素的工艺试验[J].铸造技术,2016,37(1):95-98.
|
[20] |
LUO K,WANG Z,MENG L,et al. Removal of iron for aluminum recovery from scrap aluminum alloy by supergravity separation with manganese addition[J]. Chemical Engineering and Processing - Process Intensification, 2022, 173: 108841.
|
[21] |
SONG G Y, SONG B, YANG Z B, et al. Removal of inclusions from molten aluminum by supergravity filtration[J]. Metallurgical and Materials Transactions B, 2016, 47(6): 3435-3445.
|
[22] |
MENG L, WANG Z, WANG L, et al. Novel and efficient purification of scrap Al-Mg alloys using supergravity technology[J]. Waste Management, 2021,119: 22-29.
|
[23] |
SUN N J, WANG Z, GUO L, et al. Efficient separation of reinforcements and matrix alloy from aluminum matrix composites by supergravity technology[J]. Journal of Alloys and Compounds. 2020, 843: 155814.
|
[24] |
SUN N J, WANG Z, GUO Z C. Removal of Fe from molten Al by filtration in a centrifuge. Journal of Alloys and Compounds[J]. Journal of Alloys and Compounds. 2022,906 : 164350.
|
[25] |
GUO L, WEN X C, BAO Q P, et al. Removal of Tramp Elements within 7075 Alloy by Super-Gravity Aided Rheorefining Method[J]. Metals., 2018, 8(9): 701.
|
[26] |
瞿纪平. 无铅易切削Al-Mg-Si合金的研究[D].长沙:中南大学,2011.
|
[27] |
王顺才,李春志,郑玉珍,等. Fe、Si杂质含量对2024系列铝合金组织和性能的影响[J].航空材料学报,1989, 9(2):39-47.
|
[28] |
马云龙,高艺航,陈送义,等. Fe含量对2219铝合金锻件焊接组织与性能的影响[J].宇航材料工艺,2020,50(4):77-81.
|
[29] |
李学朝.铝合金材料组织与金相图谱[M]. 北京:冶金工业出版社,2010.
|
[30] |
张先锋. PbSnBi合金熔体结构转变对凝固组织和性能的影响[D]. 合肥:合肥工业大学,2010.
|
[31] |
郭青蔚,王桂生,郭庚辰.常用有色金属二元合金相图集[M].北京:化学工业出版社,2010.
|
[32] |
(日)长崎诚三, 平林真, 刘安生. 二元合金状态图集 [M]. 北京: 冶金工业出版社, 2004.
|
[33] |
丁启圣,王维一.新型实用过滤技术[M].4版.北京:冶金工业出版社,2017.
|
[34] |
WANG Z, GAO J T, SHI A J, et al. Recovery of zinc from galvanizing dross by a method of super-gravity separation[J]. Journal of Alloys and Compounds,2018,735:1997-2006.
|
1. |
陈军,张文娟,马保中,王成彦,陈永强. 机械活化在固相反应中的研究进展. 有色金属科学与工程. 2021(01): 13-21 .
![]() |